Mechanische Wellen < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:38 Fr 04.01.2008 | Autor: | Salo89 |
Aufgabe | Ein 1,5m langes Glasrohr ist rechts von einem verschiebbaren Stempel begrenzt. Der vor dem linken, offenen Ende stehende Lautsprecher sendet sinusförmige Schallwellen aus. Von einer Abnahme der Amplitude im Inneren des Rohres ist abzusehen.
In einem Versuch wird die Abhängigkeit der Schallgeschwindigkeit von der Temperatur untersucht. Der Stempel steht bei [mm] x_{2}=1,05m [/mm] und wird zunächst nicht verschoben. Bei der Temperatur 20,0Grad Celsius ergibt sich eine Schallgeschwindigkeit von [mm] c=340\bruch{m}{s}.
[/mm]
Für die Frequenz [mm] f=1,70*10^{3}Hz [/mm] ergibt sich Resonanz. Man variiert die Temperatur und verändert die Frequenz um [mm] \Delta [/mm] f so, dass wieder Resonanz eintritt und die Zahl der Druckbäuche gleich bleibt. Dabei ergibt sich folgende Tabelle:
Temp. in Grad Celsius 0 20,0 40,0 60,0 80,0
[mm] \Delta [/mm] f in Hz -60,0 0 55,0 110 160
(a) Berechnen Sie die zugehörigen Schallgeschwindigkeiten.
Resonanz bei gleicher Zahl der Druckbäuche lässt sich auch bei der konstanten Frequenz [mm] f=1,07*10^{3}Hz [/mm] durch geeignetes Verschieben des Stempels erreichen.
(b) Bestimmen Sie mithilfe des Diagramms, um welche Strecke [mm] \Delta [/mm] x der Stempel verschoben werden müsste, wenn die Temperatur von 20,0 Grad Celsius auf 70,0 Grad Celsius erhöht wird. |
Hallo!
Ich komme bei dieser Aufgabe absolut nicht weit.
Ich habe keine Formel in der die Temperatur irgendetwas mit der Schallgeschwindigkeit zu tun hat. Hat da vielleicht jemand eine Idee?
Und bei der zweiten Teilaufgabe brauche ich ja eine Formel in der die Temperatur mit der Strecke in Verbindung gebracht werden muss. Auch da hab ich nichts was mir helfen könnte.
Vielen Dank für die Hilfe.
Liebe Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:21 Fr 04.01.2008 | Autor: | leduart |
Hallo
aus den Werten rechnest du erstmal c in Abh. von der Temperatur aus. aus der Länge, c(20°) , f kannst du die Wellenlänge bestimmen, die ist -nach Angabe -in allen Versuchen gleich!
Dann erstellst du ein Diagramm (keine Formel) in der c gegen T aufgetragen ist, und liest daraus für Aufgabe b) ab.
Immer Aufgaben genau lesen!
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:48 Fr 04.01.2008 | Autor: | Salo89 |
Hallo
Ich weiß gar nicht wie ich das ausrechnen soll mit der Abhängigkeit. kannst du mir da vielleicht nochmal einen tip geben?
Als Wellenlänge bekomme ich [mm] \lambda=0,2m [/mm] heraus.
Wäre echt toll wen du mir nochmal helfen könntest.
Liebe Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:46 Fr 04.01.2008 | Autor: | leduart |
Hallo
Du rechnest einfach [mm] c=f*\lambda, [/mm] f aus dem bekannten f und den Differenzen.
Dann hast du ne Tabelle für c,T und trägst die wie Messwerte in ein Diagramm ein.
T=0 c=0,2m*1640*1/s=328m/s T=20 c=340m/s usw.
deine c Achse muss nicht bei 0 anfangen, damit man besser ablesen kann fang bei 320 an.
x-Achsr T, y Achse c
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:29 Sa 05.01.2008 | Autor: | Salo89 |
Hallo
Danke schön für deine Hilfe.
Habe jetzt verstanden wie du das gemeint hast und habe den Rest der Aufgabe gud hingegriegt.
Liebe Grüße
|
|
|
|