www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Menge konvergenter Folgen
Menge konvergenter Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge konvergenter Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 So 08.06.2008
Autor: Karl_Pech

Hallo Zusammen,


Muß für jede Folge [mm]\left(y_n\right)[/mm] der Menge [mm]S\![/mm] aller konvergenten Folgen mit [mm]S\subset\mathbb{R}\setminus\{x\}[/mm] mit [mm]x\in\mathbb{R}[/mm] gelten [mm]y_n\ne x[/mm]? Ich frage mich nämlich, was passiert, wenn irgendeine Folge z.B. von links gegen [mm]y\![/mm] konvergiert und dabei sozusagen "an [mm]x\![/mm] vorbeilaufen" muß, da [mm]y_0 < x < y[/mm]?



Grüße
Karl


P.S. Ich brauche diese Überlegung für die Stetigkeit von [mm]f(x):=\tfrac{1}{x}[/mm].




        
Bezug
Menge konvergenter Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 So 08.06.2008
Autor: koepper

Hallo Karl,

> Muß für jede Folge [mm]\left(y_n\right)[/mm] der Menge [mm]S\![/mm] aller
> konvergenten Folgen mit [mm]S\subset\mathbb{R}\setminus\{x\}[/mm]

was ist nun S?
Ist S die Menge aller konvergenten Folgen oder ist S eine Teilmenge der reellen Zahlen?

> mit [mm]x\in\mathbb{R}[/mm] gelten [mm]y_n\ne x[/mm]? Ich frage mich nämlich,
> was passiert, wenn irgendeine Folge z.B. von links gegen
> [mm]y\![/mm] konvergiert und dabei sozusagen "an [mm]x\![/mm] vorbeilaufen"
> muß, da [mm]y_0 < x < y[/mm]?

Ich habe die Frage zwar nicht ganz verstanden, aber vielleicht hilft dir folgendes:
Das Konvergenzverhalten einer Folge ändert sich nicht, wenn du eine endliche Anzahl von Folgegliedern streichst.
Betrachte die Definition der Folgenkonvergenz: Eine Folge konvergiert genau dann gegen g, wenn in jeder (beliebig kleinen) Umgebung von g fast alle (das heißt: alle bis auf endlich viele) Glieder der Folge liegen.

> P.S. Ich brauche diese Überlegung für die Stetigkeit von
> [mm]f(x):=\tfrac{1}{x}[/mm].

Alle gebrochen rationalen Funktionen sind stetig.
Die Frage nach der Stetigkeit stellt sich nur auf dem Definitionsbereich einer Funktion.
Definitionslücken bleiben außer Betracht.

LG
Will

Bezug
                
Bezug
Menge konvergenter Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 So 08.06.2008
Autor: Karl_Pech

Hallo Will!


Danke für die Hilfe! Ich denke, das mit den endlich vielen Folgewerten, hört sich gut an. :-)



Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]