Mengen < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:43 Mo 15.10.2012 | Autor: | DarkJiN |
Aufgabe | Skizzieren Sie die folgende Menge(n) :
a)
[mm] M_{1}= \{x,y\} \in \IR^2 [/mm] | y=3 und [mm] -1\lex\le2 [/mm] |
Hab jetzt erstmal nur die erste Menge aufgeschrieben. Ich hab heute in der Vorlesung gefehlt und leider gar keine Ahnugn was damit gemeint ist, wenn es heißt wir sollen eine Menge skizzieren.
Ist hier ein Mengen Diagramm gefragt, oder wie?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:46 Mo 15.10.2012 | Autor: | pits |
Hallo DarkJin,
da es sich um eine Menge im [mm] $\IR^2$ [/mm] handelt, kann man diese Menge auf einem Blatt zeichnen. Zeichne ein Koordinatensystem und dann die Menge ein (also alle Punkte, die in der Menge sind).
Gruß
pits
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:47 Mo 15.10.2012 | Autor: | DarkJiN |
Vielen dank.
So einfach ist das also :D
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:52 Mo 15.10.2012 | Autor: | DarkJiN |
Sprich ich trag die Punkte
[mm] P_{1}(-1|3)
[/mm]
[mm] P_{2}(0|3)
[/mm]
[mm] P_{3}(1|3)
[/mm]
[mm] P_{4}(2|3)
[/mm]
ein?
|
|
|
|
|
Hallo,
> Sprich ich trag die Punkte
>
> [mm]P_{1}(-1|3)[/mm]
> [mm]P_{2}(0|3)[/mm]
> [mm]P_{3}(1|3)[/mm]
> [mm]P_{4}(2|3)[/mm]
>
> ein?
Nö. Steht da irgendetwas von ganzen Zahlen? Es geht um eine Teilmenge des [mm] \IR^2 [/mm] und die x-Werte sind als Intervall angegeben!
Gruß, Diophant
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:58 Mo 15.10.2012 | Autor: | fred97 |
> Sprich ich trag die Punkte
>
> [mm]P_{1}(-1|3)[/mm]
> [mm]P_{2}(0|3)[/mm]
> [mm]P_{3}(1|3)[/mm]
> [mm]P_{4}(2|3)[/mm]
>
> ein?
So
$ [mm] M_{1}= \{x,y\} \in \IR^2 [/mm] $ | y=3 und $ [mm] -1\lex\le2 [/mm] $
hast Du das oben geschrieben. Das wolltest Du sicher nicht, sondern so:
$ [mm] M_{1}= \{(x,y) \in \IR^2 | y=3 ~~und~~ -1\le x\le2 \} [/mm] $
Diese Menge besteht aus den Punkten (x|3) , wobei x zwischen -1 und 2 läüft.
Zeichne das mal.
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:12 Mo 15.10.2012 | Autor: | DarkJiN |
du hast natürlich recht Fred. Gemeint war:
$ [mm] M_{1}= \{(x,y) \in \IR^2 | y=3 ~~und~~ -1\le x\le2 \} [/mm] $
Also ist einfach die Gerade gefragt, die auf y=3 parallel zur x-Achse verläuft?
|
|
|
|
|
Hallo DarkJin,
> du hast natürlich recht Fred. Gemeint war:
> [mm]M_{1}= \{(x,y) \in \IR^2 | y=3 ~~und~~ -1\le x\le2 \}[/mm]
>
> Also ist einfach die Gerade gefragt, die auf y=3 parallel
> zur x-Achse verläuft?
Nein, dann hättest du als Bedingung für [mm]x[/mm]:
[mm]-\infty \ < \ x \ < \infty[/mm]
Hier bist du aber doch mit den x-Werten zwischen [mm]-1[/mm] und [mm]2[/mm] eingeschränkt.
Das ist hier also keine Gerade, sondern ...
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:16 Mo 15.10.2012 | Autor: | DarkJiN |
eine Strecke natürlich. Eigentlich war das auch gemeint. :D
oder ist was anderes gemeint?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:24 Mo 15.10.2012 | Autor: | fred97 |
> eine Strecke natürlich. Eigentlich war das auch gemeint.
> :D
>
> oder ist was anderes gemeint?
nein.
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:44 Mo 15.10.2012 | Autor: | DarkJiN |
Aufgabe | [mm] M_{4}= [/mm] {(x,y) [mm] \in \IR^2 [/mm] | [mm] |y|+|x|\ge2 [/mm] } |
Ich hab da erstmal ein paar Wertepaare aufgestellt:
x y
-2 0
-1 1
-1 -1
0 -2
0 2
1 -1
1 1
2 0
aber da ja (x,y) [mm] \in \IR^2 [/mm] ist da jede Menge dazwischen aber weil einem x Wert mehrere y Werte zugeordnet werden kann ich ja keine Strecke zeichnen, oder?
|
|
|
|
|
Hallo nochmal,
> [mm]M_{4}=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
{(x,y) [mm]\in \IR^2[/mm] | [mm]|y|+|x|\ge2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
}
> Ich hab da erstmal ein paar Wertepaare aufgestellt:
>
> x y
> -2 0
> -1 1
> -1 -1
> 0 -2
> 0 2
> 1 -1
> 1 1
> 2 0
Ob das hilft?
>
> aber da ja (x,y) [mm]\in \IR^2[/mm] ist da jede Menge dazwischen
> aber weil einem x Wert mehrere y Werte zugeordnet werden
> kann ich ja keine Strecke zeichnen, oder?
Eine Möglichkeit: Überlege dir mal, wie die Menge [mm]\{(x,y)\in\IR^2:|y|+|x| \ \red{<} \ 2\}[/mm] aussieht, dann ist schnell klar, wie deine Menge aussieht...
Anders: Du könntest mal systematisch rangehen und die Beträge auflösen.
Mache dazu mehrere Fallunterscheidungen.
1) [mm]y\ge 0[/mm], dann ist [mm]|y|=y[/mm] und du hast [mm]y\ge 2-|x|[/mm]
Nun 1a),1b) für [mm]x\ge 0[/mm], [mm]x<0[/mm] ...
2) [mm]y<0[/mm] usw.
Gehe mal die Fälle langsam und systematisch durch.
Auf wolfram alpha kannst du dir das auch mal plotten lassen zur Kontrolle ...
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:12 Mo 15.10.2012 | Autor: | DarkJiN |
Also, ich rechne mein Übungsblatt jetzt schon seit 3 h durch und langsam macht mein Kopf zu und vllt kann ich deswegen mit deiner Erklärung nichts mehr anfangen.
Aber wenn ich das plotte bekomm ich genau dasselbe wie, hier auf meinem Blatt nachdem ich meine Wertepaare eingezeichnet und miteinander verbunden habe.
|
|
|
|
|
Hallo nochmal,
> Also, ich rechne mein Übungsblatt jetzt schon seit 3 h
> durch und langsam macht mein Kopf zu und vllt kann ich
> deswegen mit deiner Erklärung nichts mehr anfangen.
> Aber wenn ich das plotte bekomm ich genau dasselbe wie,
> hier auf meinem Blatt nachdem ich meine Wertepaare
> eingezeichnet und miteinander verbunden habe.
Aus den paar Punkten bekommst du eine Fläche?!
Und du wirst doch nicht 3h gebraucht haben, um die paar Werte auszurechnen?!
Es ist [mm] $\{(x,y)\in\IR^2:|x|+|y| \ \red{=} \ 2\}$ [/mm] die Rand einer Raute mit Mittelpunkt $(0,0)$, die auf der Spitze steht und deren Spitzen 2 Einheiten in die x- und y-Richtungen gehen.
Mit [mm] $\ge$ [/mm] ist das dann der Rand und alles Äußere dieser Raute.
Dazu überlegt man sich halt durch Auflösen der Beträge, was $A$ ist und schließt von "=" auf [mm] "$\ge$"
[/mm]
Mache also die Untersuchung für "=" und du hast es.
Das dauert keine 10 Minuten mehr
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:35 Mo 15.10.2012 | Autor: | DarkJiN |
vielen vielen dank für deine Hilfe.
Aber immo bekomm cih keinen klaren Gedanken ich brauch ne Pause und beschäftige mich später nocheinmal damit.
Naja vorher hab ich die anderen Aufgabe gemacht. ;)
Musste noch Terme vereinfachen andere Mengen zeichnen und entscheiden ob bestimmte Abbildungen und Zuordnungen bijektiv, injektiv oder surektiv sind. Und ob es ne umkehrfunktion gibt und wie diese lautet. Und da ich nicht in der Vorlesung war musste ich mir immer erst erarbeiten was das alles war :D
Deswegen hab ich jetzt bestimmt 3 h gearbeitet und mein Kopf dampft. Also gönn ich mir jetzt erstmal ne Pause und rechne deine Lösung später mal durch, hoffe du nimmst mir das jetzt nicht krum.
Aber danke für deine Mühen.
|
|
|
|