www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengen
Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Hilfe beu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:27 Mo 04.11.2013
Autor: Rimey

Es seien G die Menge der geraden und U die Menge der ungeraden natürlichen Zahlen sowie
A= {1,3,5,7,9} und B = {2,4,6,8 }

a) Man bilde von je zwei dieser Mengen die Vereinigung, den Durchschnitt, die Differenzen und die symmetrische Differenz.

b) Man liste alle Elemente von A x B auf.


Meine erste Frage besteht darin wie man zbsp im Durschnitt mit G [mm] \cup [/mm] U richtig Ausschreibt oder zbsp bei G [mm] \cup [/mm] A ,
vll so ? (  G [mm] \cup [/mm] A = {1,3,5,7,9 [mm] \vee [/mm] G}

und irgendwie geht mir b) nicht in der Kopf kann wer ein denk anstoß geben
sowas hier ? G = {x [mm] \in \IN [/mm] : x is gerade}


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Mo 04.11.2013
Autor: angela.h.b.


> Es seien G die Menge der geraden und U die Menge der
> ungeraden natürlichen Zahlen sowie
> A= {1,3,5,7,9} und B = {2,4,6,8 }

Hallo,

[willkommenmr].

Die Elemente von G aufzuzählen, fällt Dir bestimmt leicht:

[mm] G=\{2,4,\qquad \qquad \qquad \} [/mm]

Beschreibend sähe es so aus:

> sowas hier ? G = [mm] \{x \in \IN: x\quad is\red{t} \quad gerade \} [/mm]

oder man könnte auch so schreiben:
[mm] G=\{2x| x\in \IN\}. [/mm]

Jetzt kannst Du ja mal U notieren, meinetwegen auch bloß aufzählend, das reicht für unsere Zwecke.


>

> a) Man bilde von je zwei dieser Mengen die Vereinigung,

Das Zeichen dafür ist [mm] \cup. [/mm]
Was muß man tun: die Elemente der Mengen zusammenwerfen.

> den
> Durchschnitt,

Das Zeichen dafür ist [mm] \cap. [/mm]
Was muß man tun: die gemeinsamen Elemente der Mengen aufschreiben.

> die Differenzen

Das Zeichen dafür ist [mm] \setminus. [/mm]
Was muß man tun: von der ersten Menge die Elemente wegnehmen, die auch in der zweiten sind.

> und die symmetrische
> Differenz

der Mengen X und Y

Das Zeichen dafür ist [mm] \Delta. [/mm]
Was muß man tun: es ist [mm] X\Delta Y=(A\setminus B)\cup (B\setminus [/mm] A)

> b) Man liste alle Elemente von A x B auf.

Diese Menge enthält alle Paare (a,b), bei denen a aus A und b aus B ist
>
>

> Meine erste Frage besteht darin wie man zbsp im Durschnitt
> mit G [mm]\cap[/mm] U richtig Ausschreibt

Der Durchschnitt von G und U ist [mm] G\cap U=\{... ... ...\}. [/mm]
In die Mengenklammer kommen alle Elemente, die sowohl in G als auch in U sind.


Du möchtest jetzt lieber über die Vereinigung sprechen?

> oder zbsp bei G [mm]\cup[/mm] A ,
> vll so ? ( G [mm] \cup [/mm]  A = [mm] \{1,3,5,7,9 \vee G\} [/mm]

Nein. So: [mm] G\cup [/mm] A= [mm] A\cup G=\{1,3,5,7,9\}\cup [/mm] G= [mm] \{... ... ...\} [/mm]
Schreib die Elemente doch aufzählend in die Klammern.

>

> und irgendwie geht mir b) nicht in der Kopf kann wer ein
> denk anstoß geben

S.o.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]