Mengenbeweis < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] A_{d} \subset \IZ [/mm] für eine ganze Zahl d [mm] \not= [/mm] 0 die Menge aller durch d teilbaren Zahlen.
a) Berechnen sie dann [mm] A_{3} \cap A_{7} [/mm] (Antwort beweisen) |
Hallo Leute,
ich bin es mal wieder. Wir haben zu so einer Aufgabe einen Beweis zu [mm] A_{2} \cap A_{3}=A_{6} [/mm] gezeigt bekommen. Wir haben uns nun überlegt ob die Menge der Teiler von 7 und 3= der Teiler von 21 ist. Mit dem Beweis klappt es nicht. Könnt ihr mir nen Tipp geben.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:49 Di 21.04.2009 | Autor: | abakus |
> Sei [mm]A_{d} \subset \IZ[/mm] für eine ganze Zahl d [mm]\not=[/mm] 0 die
> Menge aller durch d teilbaren Zahlen.
>
> a) Berechnen sie dann [mm]A_{3} \cap A_{7}[/mm] (Antwort beweisen)
> Hallo Leute,
>
> ich bin es mal wieder. Wir haben zu so einer Aufgabe einen
> Beweis zu [mm]A_{2} \cap A_{3}=A_{6}[/mm] gezeigt bekommen. Wir
> haben uns nun überlegt ob die Menge der Teiler von 7 und 3=
> der Teiler von 21 ist. Mit dem Beweis klappt es nicht.
> Könnt ihr mir nen Tipp geben.
Hallo,
zu beweisen sind folgende zwei Sätze:
1) Wenn eine Zahl z durch 21 teilbar ist, dann ist sie durch 3 und durch 7 teilbar.
Beweis:
Aus 21|z folgt z=q*21 mit q [mm] \in [/mm] Z (Def. Teilbarkeit).
Daraus folgt z=q*3*7 und damit 3|z und 7|z.
2) Wenn eine Zahl z durch 3 und durch 7 teilbar ist, ist sie durch 21 teilbar.
Beweis:
(deine Sache)
Gruß Abakus
|
|
|
|