Metriken < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Aufgabe | a) Zeigt, dass [mm] d(x,y)=(x-y)^{2} [/mm] keine Metrik auf [mm] \IR [/mm] ist
b) Zeigt, dass wenn d eine Metrik ist, dann ist [mm] d'(x,y)=\bruch{d(x,y)}{1+d(x,y)} [/mm] auch eine Metrik. (Tipp: Wenn [mm] f(x)=\bruch{x}{1+x} [/mm] für x>0, nutze den Mittelwertsatz zu zeigen, dass f(a+b) [mm] \le [/mm] f(a)+f(b))
c) Definiert d(x,y)=minimum{n ganze Zahl so dass [mm] d_{2}\le [/mm] n}, wo [mm] d_{2} [/mm] der euklidische Abstand in 2D ist. Ist es eine Metrik in 2D? |
Hallo Alle
Hat jemand bitte eine Idee zu dieser Aufgabe?
a) und b) hab ich so leidlich gemacht, das Problem ist mehr c). Jemand hat mir vorgeschlagen, die Metrik vielleicht zu zeichnen für verschiedene n-Werten. Wäre das eine Idee und wie würde das so ungefähr aussehen? Aber wenn n eine ganze Zahl sein soll und eine Metrik grösser als 0 sein muss, ist es nich einfach null, oder hab ich das nicht kapiert?
|
|
|
|
> a) Zeigt, dass [mm]d(x,y)=(x-y)^{2}[/mm] keine Metrik auf [mm]\IR[/mm] ist
> b) Zeigt, dass wenn d eine Metrik ist, dann ist
> [mm]d'(x,y)=\bruch{d(x,y)}{1+d(x,y)}[/mm] auch eine Metrik. (Tipp:
> Wenn [mm]f(x)=\bruch{x}{1+x}[/mm] für $x>0$, nutze den Mittelwertsatz
> zu zeigen, dass $f(a+b) [mm] \le [/mm] f(a)+f(b)$)
> c) Definiert [mm] $d(x,y)=\min\{n \text{ ganze Zahl so dass } d_{2}(x,y)\le n\}$, [/mm]
> wo [mm]d_{2}[/mm] der euklidische Abstand in 2D ist. Ist es eine
> Metrik in 2D?
> Hallo Alle
>
> Hat jemand bitte eine Idee zu dieser Aufgabe?
> a) und b) hab ich so leidlich gemacht, das Problem ist mehr
> c). Jemand hat mir vorgeschlagen, die Metrik vielleicht zu
> zeichnen für verschiedene n-Werten.
Zu c): Ein Bild zur Veranschaulichung wäre etwa dieses:
[Dateianhang nicht öffentlich]
Die Kreisringe mit Mittelpunkt $x$ geben jeweils die Bereiche an, deren Punkte von $x$ in der Metrik $d$ denselben Abstand ($d=1, 2, 3, 4, 5, [mm] \ldots$) [/mm] haben. Der Abstand des eingezeichnenten Punktes $y$ von $x$ wäre also, weil [mm] $d_2(x,y)=4.5$ [/mm] ist, gleich $d(x,y)=5$.
Definitheit und Symmetrie der Metrik $d$ sind, glaube ich, trivial zu zeigen. Bleibt noch die Dreiecksungleichung: wegen [mm] $d_2(x,y)\leq [/mm] d(x,y)$, für alle $x,y$, gilt
[mm]d_2(x,y)\leq d_2(x,z)+d_2(z,y)\leq d(x,z)+d(z,y),\in \IZ[/mm]
Nun ist aber [mm] $d(x,z)+d(z,y)\in \IZ$ [/mm] und daher muss [mm] $d(x,y)\leq [/mm] d(x,z)+d(z,y)$ sein, was zu zeigen war.
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Ok, vielen Dank :) jetzt hab ich es besser kapiert.
|
|
|
|