www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Minimale Primideale bestimmen
Minimale Primideale bestimmen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimale Primideale bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:40 So 06.05.2012
Autor: Anfaenger101

Aufgabe
Seien k ein Körper und A:=k[X,Y]/(XY). Bestimmen Sie die minimalen Primideale von A.

Hallo Leute,

weiß leider nicht so Recht, wie ich an diese Aufgabe rangehen soll. In der vorangegangenen Teilaufgabe habe ich mithilfe des Lemmas von Zorn bewiesen, dass solche bzgl. der Inklusionsrelation minimale Primideale existieren, aber ein Verfahren, wie man diese explizit bestimmt weiß ich leider nicht.

Was ich bisher weiß ist, dass (0) schon mal kein Primideal von A sein kann, da A kein Integritätsring ist.

Bin für jede Hilfe dankbar!

Liebe Grüße

Anfänger

        
Bezug
Minimale Primideale bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 So 06.05.2012
Autor: hippias

Mache Dir die Struktur von $A$ zu nutze: Es gilt naemlich $A= [mm] k\oplus AX\oplus [/mm] AY$, wobei [mm] $k\oplus [/mm] AX= [mm] A[X]\cong [/mm] k[X]$ gilt und analog fuer $Y$. Damit stehen schon fast alle Primideale da...

Bezug
                
Bezug
Minimale Primideale bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 So 06.05.2012
Autor: Anfaenger101

Hallo hippias,

erst einmal danke für die schnelle Antwort!

Leider steige ich nicht dahinter, wie du auf die Unterteilung A = k [mm] \oplus [/mm] AX [mm] \oplus [/mm] AY kommst, vom Rest mal ganz zu schweigen. Auch verstehe ich nicht, wieso es sich hier um eine direkte Summe handelt, die Elemente von A sind doch gar keine Tupel, oder ist das lediglich als eine Art Identifizierung gedacht?

Wäre nett, wenn du noch etwas mehr dazu sagen könntest, versteh es sonst leider nicht.

Liebe Grüße

Anfänger


Bezug
                        
Bezug
Minimale Primideale bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 So 06.05.2012
Autor: hippias

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ja, das ist als Identifizierung gedacht. Etwas lax formuliert habe ich so gedacht: In $A$ sind ja saemtliche Produkte der Gestalt $X^{n}Y^{m}= 0$, wenn $n$ und $m$ $\geq 1$ sind. Damit bleiben in $A$ nur die Polynome uebrig, die entweder nur die $X$ oder nur die $Y$ enthalten.
Folglich "enthaelt" $A$ die Polynomringe $k[X]$ und $k[Y}$ und es gilt $A= k[X]+ k[Y]$ (das mit der direkten Summe ist vielleicht auch nicht so wichtig). Bevor man das eigentliche Problem mit den minimalen Primidealen angeht, koennte man erst versuchen zu zeigen, dass jedes Primideal von $A$ $X$ oder $Y$ enthaelt. Wenn Du dann noch herausfindest, dass $AX$ und $AY$ prim sind - wofuer die obige Zerlegung von Nutzen sein koennte-, bist Du fertig.

Bezug
                                
Bezug
Minimale Primideale bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:37 Mo 07.05.2012
Autor: Anfaenger101

Ok, danke für die genauere Erklärung.
Ich werde es morgen dann gleich ausprobieren.

Liebe Grüße

Anfänger

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]