Minimum einer Summe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:55 Mi 15.07.2009 | Autor: | Giismo |
Aufgabe | Gegebensei eine konkrete Stichporbe [mm](x_1,..., x_n) x\in\IR[/mm]. Außerdem bezeichne [mm] \bar x = 1/n \summe_{i=1}^{n} x_i [/mm] das arithmetische Mittel und [mm]x_{med}[/mm] den Median. Zeige, dass
(a) der Ausdruck [mm] v(x)=\summe_{i=1}^{n} (x_i-x)^2 [/mm]bei [mm] x=\bar x [/mm]sein Minimum annimmt.
(b) der Ausdruck [mm] a(x) =\summe_{i=1}^{n} \left| x_i-x \right| [/mm]bei [mm] x=x_{med}[/mm] sein Minimum annimmt. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo
ich habe die a versuch abzuleiten und gleich null zu setzen nur weiß ich leider nicht wie man da mit summen unzugehen hat.
bei der b bin ich komplett ansatzlos.
freue mich über jeden lösunsansatz
mfg
giismo
|
|
|
|
> Gegeben sei eine konkrete Stichprobe [mm](x_1,..., x_n) x\in\IR[/mm].
> Außerdem bezeichne [mm]\bar x = 1/n \summe_{i=1}^{n} x_i [/mm] das
> arithmetische Mittel und [mm]x_{med}[/mm] den Median. Zeige, dass
> (a) der Ausdruck [mm]v(x)=\summe_{i=1}^{n} (x_i-x)^2 [/mm]bei
> [mm]x=\bar x [/mm]sein Minimum annimmt.
> (b) der Ausdruck [mm]a(x) =\summe_{i=1}^{n} \left| x_i-x \right| [/mm]bei
> [mm]x=x_{med}[/mm] sein Minimum annimmt.
> ich habe die a versucht abzuleiten und gleich null zu setzen
> nur weiß ich leider nicht wie man da mit summen umzugehen
> hat.
Ganz einfach: Eine Summe kann man glied-
weise ableiten:
[mm] $\left(\summe_{i=1}^{n} (x_i-x)^2\right)'\ [/mm] =\ [mm] \summe_{i=1}^{n}\left( (x_i-x)^2\right)'$
[/mm]
> bei der b bin ich komplett ansatzlos.
> freue mich über jeden lösungsansatz
Der Weg via Ableitung ist hier nicht zu
empfehlen. Vielleicht hilft dir hier aber
eine geometrische Vorstellung: Stell dir
die Messpunkte als Häuser in einem
langgezogenen Strassendorf vor 100
Jahren vor. Bei der Einführung des
Telefons überlegte man sich, an welcher
Stelle an der Strasse man die Telefon-
zentrale bauen sollte. Man rechnete
damit, dass nach einiger Zeit alle Häuser
einen Anschluss benötigten. Dabei musste
bei der damaligen Technik jeder einzelne
Anschluss durch eine eigene Leitung
mit der Zentrale verbunden werden.
Tipp: Fasse die zu erstellenden Leitungen
in geeigneter Weise zu Paaren zusammen !
LG Al-Chw.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:51 Mi 15.07.2009 | Autor: | Giismo |
Hey danke
habs aber scho anders gelöst
hab zuerst die 2te binomische formel benützt hab dann nach x abgeleitet, die summen getrennt , gleich null gesetzt und dann nach x aufgelöst.
aber bei der b bin ich noch kein bisschen weiter :(
bitte wiederrum da alle hilfsbereiten um hilfe :)
mfg
giismo
|
|
|
|
|
Also nochmals zu (b). Die Zahlenwerte [mm] x_i
[/mm]
seien der Größe nach geordnet:
[mm] x_1\le x_2\le x_3\le x_4\le\,.....\,\le x_n
[/mm]
Bleiben wir beim Bild mit der Telefonzentrale.
Sie werde an die Stelle x gesetzt.
Ferner sei [mm] l_i:=|x-x_i| [/mm] die Länge der Leitung
zu Haus Nr. i .
Natürlich macht es keinen Sinn, die Zentrale
ausserhalb des Dorfes zu bauen. Mit jedem
Meter, den man sie näher ans Dorf rückt,
könnte man n Meter Leitung einsparen.
Wir dürfen also davon ausgehen, dass [mm] x_1\le x\le x_n.
[/mm]
Die Gesamtlänge der Leitungen zum ersten
und zum letzten Haus ist dann [mm] l_1+l_n=x_n-x_1.
[/mm]
Da die Häuser schon stehen und nicht geplant
ist, sie in der Absicht, kürzere Leitungen zu
ermöglichen, zu verschieben, ist der Beitrag
[mm] x_n-x_1 [/mm] ein nicht zu verkleinernder Summand
der Summe aller Leitungslängen, und wir
können schreiben:
[mm] $\summe_{i=1}^{n}l_i=\underbrace{(x_n-x_1)}_{const.}+\summe_{i=2}^{n-1}l_i$
[/mm]
In einem zweiten Schritt macht man sich klar,
dass die Zentrale zwischen dem zweiten und
dem zweitletzten Haus stehen muss, und dem-
zufolge:
[mm] $x_2\le x\le x_{n-1}$ [/mm]
und:
[mm] $\summe_{i=1}^{n}l_i=\underbrace{(x_n-x_1)+(x_{n-1}-x_2)}_{const.}+\summe_{i=3}^{n-2}l_i$
[/mm]
und so weiter ...
Al-Chw.
|
|
|
|