Mittag-Leffler und drumrum < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen,
zunächst einmal würde ich gern wissen, ob ich einige Begriffe richtig verstanden hab:
Die Menge aller Hauptteile von $f$ bezeichnet man mit [mm] $H(f)={h_{a}:a \mbox{ Polstelle von } f}$.
[/mm]
Also ist doch von [mm] $f(z)=\frac{1}{z\cdot (z-1)}=-\frac{1}{z}+\frac{1}{z-1}$ [/mm] die Menge [mm] $H(f)=\{h_{a_{0}}=-\frac{1}{z};h_{a_{1}}=\frac{1}{z-1}\}$. [/mm] Richtig?
Hauptteilverteilung: Eine Hauptteilverteilung $H$ auf der offenen Menge [mm] $U\subset\IC$ [/mm] ist eine Menge [mm] $H=\{h_{a}:a\in P\}$ [/mm] von Hauptteilen in $a$, wobei die Entwicklungspunkte $a$ eine in $U$ diskrete Menge $P$ bilden.
Dann ist eine Hauptteilverteilung also irgendeine Menge von Hauptteilen, oder? Also z.B. [mm] $H=\{-\frac{1}{z}\}$ [/mm] oder [mm] $H=\{\frac{1}{z-1}\}$?
[/mm]
Der Beweis zum Satz von Mittag-Leffler behandelt den Fall von überabzählbar unendlich vielen Polen nicht, was ist mit diesem Fall?
Definition:
Eine unendliche Reihe
[mm] \begin{align*}
\sum_{\nu = 1}^{\infty} f_{\nu} \qquad f_{\nu} \mbox{ meromorph}
\end{align*}
[/mm]
konvergiert lokal gleichmäßig auf dem Bereich $U$, wenn es zu jedem $K [mm] \subset [/mm] U$ einen Index [mm] $\nu_{0}$ [/mm] so gibt, dass für [mm] $\nu \geq \nu_{0}$ [/mm] alle [mm] $f_{\nu}$ [/mm] auf $K$ holomorph sind (d.h. nur endlich viele [mm] $f_{\nu}$ [/mm] haben Pole innerhalb von $K$) und [mm] $\sum_{\nu \geq \nu_{0}} f_{\nu}$ [/mm] auf $K$ gleichmäßig konvergiert.
Warum folgt aus dieser Definition, dass die Menge $P$ aller Pole aller [mm] $f_{\nu}$ [/mm] diskret in $U$ ist?
Danke schonmal...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:21 So 07.11.2010 | Autor: | felixf |
Moin!
> Die Menge aller Hauptteile von [mm]f[/mm] bezeichnet man mit
> [mm]H(f)=\{h_{a}:a \mbox{ Polstelle von } f\}[/mm].
> Also ist doch von
> [mm]f(z)=\frac{1}{z\cdot (z-1)}=-\frac{1}{z}+\frac{1}{z-1}[/mm] die
> Menge
> [mm]H(f)=\{h_{a_{0}}=-\frac{1}{z};h_{a_{1}}=\frac{1}{z-1}\}[/mm].
> Richtig?
Ja.
> Hauptteilverteilung: Eine Hauptteilverteilung [mm]H[/mm] auf der
> offenen Menge [mm]U\subset\IC[/mm] ist eine Menge [mm]H=\{h_{a}:a\in P\}[/mm]
> von Hauptteilen in [mm]a[/mm], wobei die Entwicklungspunkte [mm]a[/mm] eine
> in [mm]U[/mm] diskrete Menge [mm]P[/mm] bilden.
> Dann ist eine Hauptteilverteilung also irgendeine Menge
> von Hauptteilen, oder? Also z.B. [mm]H=\{-\frac{1}{z}\}[/mm] oder
> [mm]H=\{\frac{1}{z-1}\}[/mm]?
Ja.
> Der Beweis zum Satz von Mittag-Leffler behandelt den Fall
> von überabzählbar unendlich vielen Polen nicht, was ist
> mit diesem Fall?
Der kann nicht auftreten: jede holomorphe Funktion kann nur abzaehbar viele Polstellen haben.
Nimm dazu eine kompakte Ausschoepfung der Menge $U$, also eine Folge [mm] $K_1, K_2, \dots$ [/mm] von kompakten Mengen mit
a) [mm] $K_i \subseteq [/mm] U$,
b) [mm] $K_i \subseteq K_{i+1}$,
[/mm]
c) [mm] $\bigcup_{i \in \IN} K_i [/mm] = U$.
Dann enthaelt [mm] $K_i$ [/mm] immer nur endlich viele Polstellen der Funktion, und $U = [mm] \bigcup_{i \in \IN} K_i$ [/mm] somit hoechstens abzaehlbar viele, da die Vereinigung abzaehlbar vieler endlicher Mengen wieder abzaehlbar ist.
> Definition:
> Eine unendliche Reihe
> [mm]\begin{align*}
\sum_{\nu = 1}^{\infty} f_{\nu} \qquad f_{\nu} \mbox{ meromorph}
\end{align*}[/mm]
>
> konvergiert lokal gleichmäßig auf dem Bereich [mm]U[/mm], wenn es
> zu jedem [mm]K \subset U[/mm] einen Index [mm]\nu_{0}[/mm] so gibt, dass für
> [mm]\nu \geq \nu_{0}[/mm] alle [mm]f_{\nu}[/mm] auf [mm]K[/mm] holomorph sind (d.h.
> nur endlich viele [mm]f_{\nu}[/mm] haben Pole innerhalb von [mm]K[/mm]) und
> [mm]\sum_{\nu \geq \nu_{0}} f_{\nu}[/mm] auf [mm]K[/mm] gleichmäßig
> konvergiert.
>
> Warum folgt aus dieser Definition, dass die Menge [mm]P[/mm] aller
> Pole aller [mm]f_{\nu}[/mm] diskret in [mm]U[/mm] ist?
Nun, [mm] $\sum_{\nu \geq \nu_0} f_\nu$ [/mm] hat in $K$ keinen Pol. Jedes [mm] $f_\nu$ [/mm] hat in $K$ nur endlich viele Pole. Und [mm] $\sum_{\nu \geq 0} f_\nu$ [/mm] kann in einem Punkt nur dann einen Pol haben, wenn mind. ein [mm] $f_\nu$ [/mm] dort einen Pol hat. Damit ist die Polstellenmenge von [mm] $\sum_{\nu \geq 0} f_\nu$ [/mm] in der Vereinigung der Polstellenmengen von [mm] $f_1, \dots, f_{\nu_0-1}$ [/mm] enthalten, und geschnitten mit $K$ ist das ist eine Vereinigung von endlich vielen endlichen Mengen, also wiederum endlich.
Und "diskret in $U$" heisst ja gerade, dass in jeder kompakten Teilmenge von $U$ nur endlich viele Pole liegen.
LG Felix
|
|
|
|
|
Hey, super, dankeschön!
DANKE DANKE DANKE!
|
|
|
|