www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Mittelpunktsellipse
Mittelpunktsellipse < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelpunktsellipse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Fr 09.11.2007
Autor: bore

Aufgabe
x=a*cos(t), y=b*sin(t)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Schon wieder ich...
Bin wirklich sehr froh über dieses Forum, dies ist eine SUPER Sache!

Nun zu meiner Aufgabe
Die Mittelpunktsellipse mit den Halbachsen a und b besitzt die obige Parameterdarstellung. Bestimmen Sie den Anstieg der zum Parameterwert t1=Pi/4 gehörenden Ellipsentangente. Wo besitzt die Ellipse waagerechte bzw. senkrechte Tangenten?

Die Ableitung der Parameterform habe ich: -(a/b)*cot(t)

Aber wie komme ich nun auf diese Tangenten?

Danke und Gruss

        
Bezug
Mittelpunktsellipse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Fr 16.11.2007
Autor: bore

Interesse immer noch vorhanden...

Bezug
        
Bezug
Mittelpunktsellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Fr 16.11.2007
Autor: leduart

Hallo
> x=a*cos(t), y=b*sin(t)

> Nun zu meiner Aufgabe
>  Die Mittelpunktsellipse mit den Halbachsen a und b besitzt
> die obige Parameterdarstellung. Bestimmen Sie den Anstieg
> der zum Parameterwert t1=Pi/4 gehörenden Ellipsentangente.
> Wo besitzt die Ellipse waagerechte bzw. senkrechte
> Tangenten?
>  
> Die Ableitung der Parameterform habe ich: -(a/b)*cot(t)

von was ist das die Ableitung?
es ist doch dy/dx=y'/x' die Steigung der Tangente! also musst du nur in die richtige Ableitung [mm] t1=\pi/4 [/mm] einsetzen.
Tangente waagerecht für y'=0,  Tangente senkrecht für x'=0
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]