Mittelwert und Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:47 Mo 14.11.2005 | Autor: | jogole |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi Leute!! Semesterferien sind vorbei und schon stehen wieder Probleme vor der Tür! Ich hoffe ihr könnt mir bei folgender Aufgabe weiterhelfen:
Seien [mm] U_{1},\ldots,U_{12} [/mm] unabhängige, gleichverteilte Zufallszahlen im Intervall [0,1]. Berechnen Sie Mittelwert und Varianz von
X = [mm] \summe_{k=1}^{12}U_{k}-6.
[/mm]
Das fände ich super toll, könntet ihr mir da weiterhelfen. Hab nämlich keine Ahnung davon.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:29 Mo 14.11.2005 | Autor: | Infinit |
Hallo Jogele,
Dein Problem lässt sich lösen, wenn Du daran denkst, dass die Erwartungswertbildung, und hierzu gehören die Berechnungen von Mittelwert und Varianz, lineare Operationen sind, die mit anderen linearen Operationen wie der Summenbildung vertauscht werden können. Der Erwartungswert über eine Summe unabhängiger Zufallsvariablen ist demnach die Summe über die Erwartungswerte der einzelnen Zufallsvariablen.
Für eine gleichverteilte Zufallsvariable mit konstaner Dichte wird die Berechnung von Mittelwert und Varianz recht einfach:
$E(U) = [mm] \int_{0}^{1} [/mm] 1 [mm] \cdot [/mm] u du $ liefert den Mittelwert und für die Varianz bekommt man nach ein paar Umformungen heraus, dass sie sich aus dem quadratischen Mittelwert minus dem Quadrat des Mittelwertes ergibt.
[mm] $E(U^{2}) [/mm] = [mm] \int_{0}^{1} [/mm] 1 [mm] \cdot u^{2} [/mm] du $. Das ergibt dann für den Mittelwert $E(U) = [mm] \bruch{1}{2} [/mm] $ und für den quadratischen Erwartungswert bekommt man
$ [mm] E(U^{2}) [/mm] = [mm] \bruch{1}{3} [/mm] $. Nun ja, und ein Drittel minus ein Viertel ergibt ein Zwölftel und das ist der Wert für die Varianz.
Somit ergibt sich für den Mittelwert $ E(X) = 0 $.
Für die Varianz gilt aufgrund der Unabhängigkeit der Zufallsvariablen, dass sich die Varianz einer Summe durch die Summe der Varianzen ergibt. Die Varianz über eine Konstante ist natürlich Null.
Somit bekommst Du zwölfmal ein Zwölftel und was das ist, kannst Du leicht ausrechnen.
Ich gebe zu, das war ein Schnelldurchgang. Setze Dich mal in einer ruhigen Stunde hin und leite die Umformungen, die ich jetzt nur erwähnt habe, her, das hilft ungemein beim Verständnis der Wahrscheinlichkeitsrechnung.
Viele Grüße,
Infinit
|
|
|
|