www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Momentenmethode
Momentenmethode < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momentenmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:45 Mo 19.12.2011
Autor: MattiJo

Aufgabe
Sei (X1, . . . , Xn) eine Zufallsstichprobe. Bestimmen Sie (falls möglich) die Punktschätzer für den Parameter θ mit der Momentenmethode, falls

b) [mm] X_i [/mm] geometrisch verteilt ist mit Parameter θ ∈ (0, 1), d.h. P(X = k) = [mm] \Theta(1 [/mm] − [mm] \Theta)^{k-1} [/mm] , k = 1, 2, . . .

c) [mm] X_i [/mm] die Dichte f(x;θ) = [mm] \bruch{\Theta}{x^2}\cdot 1_{[\Theta, \infty)}(x) [/mm] für θ > 0 hat.

[mm] d)X_i [/mm] die Dichte  f (x; θ) = exp (-(x - [mm] \Theta)) \cdot 1_{[\Theta, \infty)}, [/mm] x ∈ [mm] \IR [/mm] hat.


Hallo,

derzeit sitze ich an der Momentenmethode. Mir ist diese Methode bisher leider nur bei der Normalverteilung schlüssig geworden, wo ich mit dem ersten Moment E(X) den Erwartungswert [mm] \mu [/mm] und mit dem zweiten Moment [mm] E(X^2) [/mm] zuzüglich des ersten Moments die Varianz schätzen kann.

Aber welches "Kochrezept" kann ich anwenden, um allgemein - bei anderen Verteilungen, wie beispielsweise den obigen - die jeweilgen Parameter schätzen zu können? Wenn ich keinen Erwartungswert, keine Varianz, sondern wie in den obigen Verteilungen ein [mm] \Theta [/mm] schätzen möchte?

Vielen Dank!

MattiJo

        
Bezug
Momentenmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 07:56 Mo 19.12.2011
Autor: luis52

Moin,

i.a. ist [mm] $\operatorname{E}[X]$ [/mm] eine Funktion [mm] $g(\theta)$ [/mm] des zu schaetzenden Parameters [mm] $\theta$. [/mm] Andererseits ist [mm] $\bar X=\sum_{i=1}^n X_i/n$ [/mm] ein erwartungstreuer und konsistener Schaetzer fuer  [mm] $\operatorname{E}[X]$. [/mm] Ein MM-Schaetzer resultiert durch Aufloesen der Gleichung [mm] $\bar X=g(\hat\theta)$ [/mm] nach [mm] $\hat\theta$. [/mm]

Beispiel Aufgabe b) [mm] $\operatorname{E}[X]=1/p$: $1/\hat p=\bar [/mm] X [mm] \iff \hat p=1/\bar [/mm] X$. [mm] $1/\bar [/mm] X$ ist somit ein Schaetzer fuer $p$ nach MM fuer die geometrische Verteilung.

vg Luis


vg Luis

Bezug
                
Bezug
Momentenmethode: zur c)
Status: (Frage) beantwortet Status 
Datum: 13:14 Mo 19.12.2011
Autor: MattiJo

Vielen Dank!

Wenn ich das jetzt auf die c) anwenden möchte, heißt das doch, ich muss zunächst den Erwartungswert (1. Moment) bestimmen.
[mm] m_1 [/mm] = E(X) = [mm] \integral_{\Theta}^{\infty}{x f(x) dx} [/mm] = [mm] \integral_{\Theta}^{\infty}{x \bruch{\Theta}{x^2} dx} [/mm] = = [mm] \Theta \cdot \integral_{\Theta}^{\infty}{\bruch{1}{x} dx} [/mm] = [mm] \Theta \cdot [/mm] ln [mm] (x)^\infty_\Theta [/mm]

Heißt das, hier gibt es kein erstes Moment und ich kann die Momentenmethode nicht anwenden?

Bezug
                        
Bezug
Momentenmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Mo 19.12.2011
Autor: luis52

Moin

> Heißt das, hier gibt es kein erstes Moment und ich kann
> die Momentenmethode nicht anwenden?

In der Tat, so etwas kann passieren.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]