Momentenmethode (Schätzer) < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:48 Di 21.03.2017 | Autor: | ChopSuey |
Aufgabe | Seien $ [mm] X_1, [/mm] ... , [mm] X_n [/mm] $ unabhängige Zufallsvariablen mit Dichtefunktion $ [mm] p_{\theta}(x) [/mm] = [mm] (\theta [/mm] + [mm] 1)x^{\theta}1_{[0,1]}(x)$ [/mm] wobei $ [mm] \theta \in (0,\infty)$ [/mm] ein unbekannter Parameter sei.
Berechne $ [mm] E_{\teta}(X_1)$ [/mm] und bestimme einen Schätzer für $ [mm] \theta [/mm] $ nach der Momentenmethode. |
Hallo,
ich bin nicht sicher, ob mein Lösungsweg der richtige ist bzw ob ich beim Integral richtig vorgegangen bin und würde mich sehr freuen, wenn mir jemand Hilfestellung geben könnte.
Mein Ansatz:
[mm] $E_{\teta}(X_1) [/mm] =: [mm] m_1(\theta)$ [/mm] ist das 1-te (theoretische) Moment von $ [mm] X_1$ [/mm] und berechnet sich zu
$ [mm] \int xp_{\theta}(x)dx [/mm] = [mm] \int x(\theta [/mm] + [mm] 1)x^{\theta}1_{[0,1]}(x)dx [/mm] = [mm] (\theta [/mm] + [mm] 1)\int x^{\theta+1}1_{[0,1]}(x)dx [/mm] = [mm] \begin{cases} (\theta + 1)\frac{1}{(\theta + 2)}x^{(\theta + 2)} + C & \mbox{für } x \in [0,1] \\ 1 & \mbox{sonst } \end{cases} [/mm] $
Bin ich bis hierhin soweit richtig? Bin mir noch nicht ganz sicher ob ich die Indikatorfunktion korrekt berücksichtigt habe.
Falls das soweit stimmt, wäre mein nächster Schritt gewesen $ [mm] \hat m_{1} [/mm] = [mm] \frac{x_1 + ... + x_n}{n}$ [/mm] durch das empirische Moment zu schätzen und $ [mm] m_1(\theta) [/mm] = [mm] \hat m_1 [/mm] $ zu lösen.
Würde mich freuen wenn jemand einen Blick drauf wirft und mir sagen kann, wo ich eventuell Fehler gemacht habe oder ob ich auf dem richtigen Weg bin.
Vielen Dank für jeden Hinweis.
LG,
ChopSuey
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:32 Di 21.03.2017 | Autor: | luis52 |
>
> Mein Ansatz:
>
> [mm]E_{\teta}(X_1) =: m_1(\theta)[/mm] ist das 1-te (theoretische)
> Moment von [mm]X_1[/mm] und berechnet sich zu
>
> [mm]\int xp_{\theta}(x)dx = \int x(\theta + 1)x^{\theta}1_{[0,1]}(x)dx = (\theta + 1)\int x^{\theta+1}1_{[0,1]}(x)dx = \begin{cases} (\theta + 1)\frac{1}{(\theta + 2)}x^{(\theta + 2)} + C & \mbox{für } x \in [0,1] \\ 1 & \mbox{sonst } \end{cases}[/mm]
>
> Bin ich bis hierhin soweit richtig?
Moin, nein. Du wirst etwas erhalten, worin die Integrationsvariable nicht eingeht. Es ist [mm] $(\theta [/mm] + [mm] 1)\int x^{\theta+1}1_{[0,1]}(x)\,dx =(\theta [/mm] + [mm] 1)\int_0^1 x^{\theta+1}\,dx$ [/mm] ...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:55 Di 21.03.2017 | Autor: | ChopSuey |
Hallo Luis,
> >
> > Mein Ansatz:
> >
> > [mm]E_{\teta}(X_1) =: m_1(\theta)[/mm] ist das 1-te (theoretische)
> > Moment von [mm]X_1[/mm] und berechnet sich zu
> >
> > [mm]\int xp_{\theta}(x)dx = \int x(\theta + 1)x^{\theta}1_{[0,1]}(x)dx = (\theta + 1)\int x^{\theta+1}1_{[0,1]}(x)dx = \begin{cases} (\theta + 1)\frac{1}{(\theta + 2)}x^{(\theta + 2)} + C & \mbox{für } x \in [0,1] \\ 1 & \mbox{sonst } \end{cases}[/mm]
>
> >
> > Bin ich bis hierhin soweit richtig?
>
> Moin, nein. Du wirst etwas erhalten, worin die
> Integrationsvariable nicht eingeht. Es ist [mm](\theta + 1)\int x^{\theta+1}1_{[0,1]}(x)\,dx =(\theta + 1)\int_0^1 x^{\theta+1}\,dx[/mm]
> ...
Ohman, natürlich! Irgendwie kam ich nicht mehr drauf obwohl es doch so eindeutig und einfach ist.
Vielen Dank für die Rückmeldung!
LG,
ChopSuey
|
|
|
|