Monoide und Untermonoide < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ist die folgende Struktur ein Monoid, wenn man ein geeignetes Element als neutrales Element auswählt? Geben Sie für ein Monoid das neutrale Element an, sowie ein echtes, nicht-triviales Untermonoid davon!
[mm] $\langle \IR \times \IR, [/mm] m [mm] \rangle$, [/mm] wobei m(x,y) den Mittelpunkt der Strecke von x nach y berechnet. |
Hallo,
mir leuchtet die Musterlösung leider nicht ein:
Musterlösung:
Für ein neutrales Element [mm] $(e_{1},e_{2}) \in \IR^{2}$ [/mm] müsste für einen beliebigen Punkt $(x,y) [mm] \in \IR^{2}$ [/mm] die Formel $(x,y) = m [mm] \left( (x,y),(e_{1},e_{2}) \right) [/mm] = [mm] (\bruch{x+e_{1}}{2},\bruch{y+e_{2}}{2})$ [/mm] gelten. Diese Gleichung besitzt aber keine von x unabhängige Lösung, denn die Gleichung $x = [mm] \bruch{x+e_{1}}{2}$ [/mm] gilt genau dann, wenn $x = [mm] e_{1}$ [/mm] gilt. Es gibt aber in [mm] $\IR^{2}$ [/mm] mindestens zwei Punkte mit unterschiedlicher x-Koordinate, z.B. (0,0) und (1,1).
Wenn man für (x,y) = (0,0) und für [mm] $(e_{1},e_{2})=(0,0)$ [/mm] schreibt, entsteht wieder (x,y) = (0,0), also genau das was man wollte.
Warum liege ich falsch?
Vielen Dank für die Mühe!
Gruß
el_grecco
|
|
|
|
> Ist die folgende Struktur ein Monoid, wenn man ein
> geeignetes Element als neutrales Element auswählt? Geben
> Sie für ein Monoid das neutrale Element an, sowie ein
> echtes, nicht-triviales Untermonoid davon!
>
> [mm]\langle \IR \times \IR, m \rangle[/mm], wobei m(x,y) den
> Mittelpunkt der Strecke von x nach y berechnet.
> Hallo,
>
> mir leuchtet die Musterlösung leider nicht ein:
>
> Musterlösung:
> Für ein neutrales Element [mm](e_{1},e_{2}) \in \IR^{2}[/mm]
> müsste für einen beliebigen Punkt [mm](x,y) \in \IR^{2}[/mm] die
> Formel [mm](x,y) = m \left( (x,y),(e_{1},e_{2}) \right) = (\bruch{x+e_{1}}{2},\bruch{y+e_{2}}{2})[/mm]
> gelten. Diese Gleichung besitzt aber keine von x
> unabhängige Lösung, denn die Gleichung [mm]x = \bruch{x+e_{1}}{2}[/mm]
> gilt genau dann, wenn [mm]x = e_{1}[/mm] gilt. Es gibt aber in
> [mm]\IR^{2}[/mm] mindestens zwei Punkte mit unterschiedlicher
> x-Koordinate, z.B. (0,0) und (1,1).
>
Die ist richtig
>
>
> Wenn man für (x,y) = (0,0) und für [mm](e_{1},e_{2})=(0,0)[/mm]
> schreibt, entsteht wieder (x,y) = (0,0), also genau das was
> man wollte.
Natürlich ist für diesen Fall das Ergebnis (0,0). Aber das neutrale Element muss für alle (x,y) mit - x und y beliebig - neutral sich verhalten!
>
> Warum liege ich falsch?
Weil es eben nicht für alle (x,y) gilt!
neutrales Element: [mm] $e\in [/mm] G$ heißt neutral, falls
[mm] $\forall g\inG\;:\; [/mm] eg=g$ gilt.
Und nicht
[mm] $\exists g\inG\;:\; [/mm] eg=g$ gilt.
>
>
> Vielen Dank für die Mühe!
>
> Gruß
> el_grecco
>
|
|
|
|