www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Monte-Carlo Verfahren
Monte-Carlo Verfahren < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monte-Carlo Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 So 24.11.2013
Autor: CaNi

Aufgabe
Sei h: [mm] \IR [/mm] -> [mm] \IR [/mm] ein Polynom. Beschreiben Sie ein Monte-Carlo Verfahren zur numerischen Bestimmung von [mm] \integral_{\infty}^{-\infty}{dx exp(-x²) h(x)}! [/mm] Zeigen Sie die Konvergenz des Verfahrens.


Hallo zusammen,

schon wieder eine Aufgabe bei der ich nicht weiter komme heute... Monte-Carlo Verfahren, da stehe ich auf Kriegsfuß...
also bei monte-carlo wird ja quasi immer das schwache Gesetz der großen Zahlen angewandt, ein Grund wieso mir das nicht schlüssig ist...
Also müsste man hier irgendwie sagen:
[mm] \wurzel{\pi} [/mm] * [mm] \integral_{\infty}^{-\infty}{dx exp(-x²) h(x)/\wurzel{\pi}} [/mm]
X ~ [mm] N(0,\bruch{1}{2}) [/mm]
dann "generiert" man [mm] x_{1}, x_{2}.. [/mm] iid [mm] N(0,\bruch{1}{2}) [/mm]
und sagt dann mit dem schwachen Gesetz der großen Zahlen:
[mm] \bruch{\wurzel{\pi}}{N} [/mm] * [mm] \summe_{i=0}^{n} h(x_{i}) [/mm] --> [mm] \wurzel{\pi} [/mm]

So in der Art ist es sicher richtig oder? Verstehen tue ich leider nicht wirklich viel... Wieso am Anfang erweitern mit [mm] \wurzel{\pi} [/mm] und was ist dieses "generiere" [mm] x_{1},... [/mm] und wieso kann man dann einfach sagen das es konvergiert? Finde auch einfach keine verständliche Beschreibung zu dem Monte-Carlo Verfahren :(


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Monte-Carlo Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 So 24.11.2013
Autor: Fry

Hey CaNi,

also wenn´s richtig verstanden habe, gehts ja dann so:
Nach dem starken Gesetz der großen Zahlen gilt ja

[mm] $\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i=E[X_1]$ [/mm] P-fast sicher,
falls die [mm] $X_i$ [/mm] st.unabhängig, identisch verteilt und [mm] $E[X_1]$ [/mm] existiert.

Schaut man sich das Integral so ist dies gerade [mm] $=\sqrt{\pi}*E[h(X_1)]$ [/mm]
wobei [mm] $X_1$~$\mathcal N\left(0,\frac{1}{2}\right)$ [/mm]
Nun gilt entsprechend obigen Gesetzes für [mm] $X_1,...,X_n$ [/mm] st.u., identisch [mm] $\mathcal N\left(0,\frac{1}{2}\right)$-verteilt, [/mm]
dass [mm] $\lim_{n\to\infty}\frac{\sqrt{\pi}}{n}\sum_{i=1}^{n}h(X_i)=\sqrt{\pi}*E[h(X_1)]=\int_{-\infty}^{\infty}e^{-x}h(x)dx$ [/mm]
P-fast sicher.

d.h. man simuliert z.B. mit der Polarmethode oder Box-Muller-Methode möglichst viele unabhängige [mm] $\mathcal [/mm] N(0,1/2)$-verteilte Zufallszahlen [mm] $x_1,...,x_n$. [/mm]
Für großes n gilt dann also näherungsweise [mm] $\int_{-\infty}^{\infty}e^{-x}h(x)dx=\frac{\sqrt{\pi}}{n}\sum_{i=1}^{n}h(x_i)$ [/mm]

LG
Fry

Bezug
                
Bezug
Monte-Carlo Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 So 24.11.2013
Autor: CaNi

Hi Fry,

also deine Erklärung ist echt super und du hast mir heute mehr als genug geholfen... Wirklich super!!
aaaber eins ist mir noch nicht ganz klar leider woher kommt das [mm] \wurzel{\pi} [/mm] genau? Aus dem Integral des Erwartungswertes? und wie kommt man dann auf $ [mm] \mathcal N\left(0,\frac{1}{2}\right) [/mm] $ ?

Bezug
                        
Bezug
Monte-Carlo Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 So 24.11.2013
Autor: Fry

Wie lautet denn die Wkeitsdichte einer [mm] $\mathcal N(\mu,\sigma^2)$-Verteilung? [/mm]
Bei einer absolutstetig verteilten Zufallsvariablen $X$ mit Dichte $f$ auf [mm] $\mathbb [/mm] R$ gilt:

[mm] $E[h(X)]=\int_{-\infty}^{\infty} [/mm] h(x)*f(x)dx$
also z.B.
$E[ln [mm] X]=\int_{-\infty}^{\infty} [/mm] ln(x)*f(x)dx$
[mm] $E[X^2]=\int_{-\infty}^{\infty} x^2*f(x)dx$ [/mm]
usw.

Setze die Dichte dann mal ein...


[ kleine Erinnerung: für diskrete Zufallsvariable X mit Wertebereich [mm] $X(\Omega)$ [/mm] gilt übrigens:
[mm] $E[h(X)]=\sum_{k\in X(\Omega)}h(k)*P(X=k)$ [/mm]
$E[ln [mm] X]=\sum_{k\in X(\Omega)}ln(k)*P(X=k)$ [/mm]
[mm] $E[X^2]=\sum_{k\in X(\Omega)}k^2*P(X=k)$ [/mm] ]

LG

Bezug
        
Bezug
Monte-Carlo Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 So 24.11.2013
Autor: Fry

wobei ich gerade sehe, dass in der Dichte eigentlich nen Quadrat fehlt....hast du das vielleicht vergessen?

Bezug
                
Bezug
Monte-Carlo Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 So 24.11.2013
Autor: CaNi

Hi,
danke für die gute Hilfe!! Ich habe tatsächlich das quadrat vergessen... tut mir leid es müsste exp(-x²) heissen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]