Moore-Penrose Inverse < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] A^+ [/mm] die Moore-Penrose Inverse der Matrix A. Zeigen sie die Aussagen:
(i) [mm] A A^+ A = A [/mm]
(ii) Ist A eine normale nxn- Matrix, d.h. [mm] A^T A = A A^T [/mm], so gilt [mm] A A^+ = A^+ A [/mm] |
Mein Problem hierbei ist folgendes:
(i) kenne ich eigentlich nur als Bestandteil der Definition von der Moore-Penrose Inversen und kann es nur zeigen für eine Matrix, die vollen Rang hat.
Ansonsten stehe ich auf dem Schlauch.
Wir haben die Moore-Penrose Inverse definiert als lineare Abbildung, welche b auf [mm]x^+[/mm] abbildet. Wobei [mm]x^+[/mm] die verallgemeinerte Lösung von Ax=b ist, dh. 1) [mm]x^+[/mm] ist kleinste Quadrate Lösung und 2) unter allen kleinste Quadrate Lösungen von Ax=b hat [mm]x^+[/mm] die kleinste Norm.
Bei (ii) weiß ich erst gar nicht, wo ich mit meiner Voraussetzung ansetzen soll. Wo finde ich ein [mm] A^T [/mm] ?
Vielen Dank jetzt schon mal für die Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:55 Di 22.05.2012 | Autor: | hippias |
Zu 1) Muessen zeigen, dass [mm] $AA^{+}Ax= [/mm] Ax$ fuer alle $x$ gilt. Mit $b:= Ax$ ist also [mm] $A^{+}b$ [/mm] die kleinst Quadrate Loesung von $Au= b$ mit kleinster Norm. Da aber $x$ eine Loesung von $Au= b= Ax$ ist, gilt [mm] $A^{+}b= [/mm] x+ k$ wobei $k$ aus dem Kern von $A$ ist.Jetzt musst Du nur nocheinmal $A$ anwenden.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Do 24.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|