www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Münzwurf-Glücksspiel
Münzwurf-Glücksspiel < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Münzwurf-Glücksspiel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:23 Di 09.12.2008
Autor: Salamence

Aufgabe
Christian benötigt 5 €. Er hat aber nur 1 € (2 € / 3 € / 4 €). Er wettet mit Niklas, vorhersagen zu können, ob eine Münze auf Kopf oder Zahl landet. Hat er Recht, so gibt ihm Niklas einen Euro. Hat er Unrecht, so erhält Niklas den geworfenen Euro. Das Spiel ist beendet, wenn Christian keinen Euro mehr werfen kann oder er die 5 € hat, die er benötigt. Wie oft wird eine Münze im Mittel geworfen, bis das Spiel vorbei ist?

Erstmal die Übergangsmatrix (nach aufsteigenden Beträgen):

[mm] U=\pmat{ 1 & \bruch{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \bruch{1}{2} & 0 & 0 & 0 \\ 0 & \bruch{1}{2} & 0 & \bruch{1}{2} & 0 & 0 \\ 0 & 0 & \bruch{1}{2} & 0 & \bruch{1}{2} & 0 \\ 0 & 0 & 0 & \bruch{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \bruch{1}{2} & 1 } [/mm]

Die Wahrscheinlichkeit, dass nach x Würfen ein absorbierender Zustand erreicht ist, ist ja dem folgenden Vektor zu entnehmen, wobei v der Startvektor ist.

[mm] \vec{v_{x}}=U^x*\vec{v} [/mm]

Und die Wahrscheinlichkeit, dass es erst nach x Würfen dazu kommt:

[mm] \vec{p_{x}}=U^x*\vec{v}-U^{x-1}*\vec{v} [/mm]

Der Erwartungswert ist ja die Summe aller x*p(x).

[mm] \vec{m}=\summe_{i=1}^{\infty}(x_{i}*(U^x*\vec{v}-U^{x-1}*\vec{v})) [/mm]

Da es zwei absorbierende Zustände müsste [mm] m=m_{1}+m_{6} [/mm] sein.

Das ergibt:
1 € m=4
2 € m=6
3 € m=6
4 € m=4

Kann das so stimmen? Ich weiß, dass dafür auch die 2. Mittelwertsregel anwendbar sein sollte. Allerdings hatten wir die noch nicht und außerdem verstehe ich nicht mal die erste so richtig.

        
Bezug
Münzwurf-Glücksspiel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 10.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]