www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Niveaukurve
Niveaukurve < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Niveaukurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mo 18.10.2010
Autor: Kuriger

Hallo

bestimmen Sie die Gleichung der Niveaukurve durch den Punkt (2,1)

f(x,y) = [mm] e^{x^2 -4y} [/mm] + ln(x - [mm] y^2) [/mm]

Niveaukurve
c = [mm] e^{x^2 -4y} [/mm] + ln(x - [mm] y^2) [/mm]

oder nun kann ich mir eine bestimmte Niveaukurve aussuchen?
z. B. die Niveaukurve:
c= 0
0 = [mm] e^{x^2 -4y} [/mm] + ln(x - [mm] y^2) [/mm]

Danke für die Hilfe, Gruss Kuriger

        
Bezug
Niveaukurve: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Mo 18.10.2010
Autor: MathePower

Hallo Kuriger,


> Hallo
>  
> bestimmen Sie die Gleichung der Niveaukurve durch den Punkt
> (2,1)
>  
> f(x,y) = [mm]e^{x^2 -4y}[/mm] + ln(x - [mm]y^2)[/mm]
>  
> Niveaukurve
>  c = [mm]e^{x^2 -4y}[/mm] + ln(x - [mm]y^2)[/mm]
>  
> oder nun kann ich mir eine bestimmte Niveaukurve
> aussuchen?


Nein, setze den Punkt (2,1) in die Gleichung

[mm]c = e^{x^2 -4y} + ln(x - y^2)[/mm]

ein, und dann bekommst Du das c heraus.


>  z. B. die Niveaukurve:
>  c= 0
>  0 = [mm]e^{x^2 -4y}[/mm] + ln(x - [mm]y^2)[/mm]
>  
> Danke für die Hilfe, Gruss Kuriger


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]