Normalenvektor bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:06 Sa 03.03.2007 | Autor: | Imkeje |
Aufgabe | Sei [mm] \Delta =\{(x_1,...x_(_d_+_1_))| x_i\ge 0 \text{ für } i=1,...,d+1 \text{ und } x_1+...+x_(_d_+_1_)=1\} [/mm]
Betrachte [mm] \Delta [/mm] als ein d-dimensionalen konvexen Körper in der affinen Hyperebene [mm] H=\{(x_1,...x_(_d_+_1_))| x_1+...+x_(_d_+_1_)=1\}. [/mm]
Bestimme die Normalvektoren der Tangentialhyperebenen von [mm] \Delta [/mm] . |
Also,
die Gleichnung der Hyperbene lautet:
[mm] f(x_1,...,x_d)=1-x_1-...-x_d
[/mm]
ich weiß für die Tangentialebenen der Hyperebene bzw. des Simplex [mm] \Deta [/mm] gilt muß gelten.
[mm] (\partial f(x_1,...,x_d)/\partial x_1)(x_1-x_0)+...+(\partial f(x_1,...,x_d)/\partial x_d)(x_d-x_0)=0.
[/mm]
ok, so weit so gut.
Bilde ich also
[mm] \partial f(x_1,...,x_d)= [/mm] 1-1=0
Und jetzt?
Wie kann ich die Gleichung der Tangenialebenen erhallten und vorallem wie erhallte ich die normalenvektoren der Tangentialebenen der Hyperebene [mm] \Delta?
[/mm]
Brauch dingend Hilfe!!!
Bitte!
|
|
|
|
So ganz klar ist mir die Aufgabe nicht. Sind mit den Tangentialhyperebenen die Seitensimplizes von [mm]\Delta[/mm] gemeint? Einen Normalenvektor bezüglich des umgebenden [mm]\mathbb{R}^{d+1}[/mm] besitzen die ja nicht. Ich könnte mir höchstens vorstellen, daß mit dem Begriff "Normalenvektor" hier ein Vektor gemeint ist, der auf dem Seitensimplex und [mm]\Delta[/mm] selbst senkrecht steht. Der ist natürlich bis auf die Länge eindeutig.
Nehmen wir den einfachsten Fall, das zweidimensionale Simplex: [mm]d=2[/mm]. Es geht hier also um ein Dreieck, eingebettet in den [mm]\mathbb{R}^3[/mm]. Dann ist [mm]H[/mm] die Ebene [mm]x_1 + x_2 + x_3 = 1[/mm] mit [mm]n_H = (1,1,1)[/mm] als Normalenvektor bezüglich des [mm]\mathbb{R}^3[/mm]. Die Eckpunkte des Dreiecks haben die Koordinaten
[mm]A_1 = (1,0,0) \, , \ \ A_2 = (0,1,0) \, , \ \ A_3 = (0,0,1)[/mm]
Es seien nun [mm]\Delta_1, \Delta_2 , \Delta_3[/mm] die [mm]A_1[/mm] bzw. [mm]A_2[/mm] bzw. [mm]A_3[/mm] gegenüberliegenden Seitensimplizes. Im speziellen Fall ist [mm]\Delta_1[/mm] die Strecke [mm]A_2 A_3[/mm], [mm]\Delta_2[/mm] die Strecke [mm]A_1 A_3[/mm] und [mm]\Delta_3[/mm] die Strecke [mm]A_1 A_2[/mm]. Im oben erklärten Sinn haben diese Strecken die "Normalenvektoren" [mm]n_1 = (-2,1,1) \, , \ n_2 = (1,-2,1) \, , \ n_3 = (1,1,-2)[/mm]. Denn jeder dieser Vektoren steht auf dem entsprechenden Seitensimplex und auf [mm]H[/mm] senkrecht (bilde Skalarprodukte!).
Im allgemeinen Fall hast du [mm]d+1[/mm] Punkte [mm]A_1, A_2, \ldots, A_{d+1}[/mm]. Wenn du die Seitensimplizes [mm]\Delta_i[/mm] analog definierst, dann hat [mm]\Delta_i[/mm] denjenigen Vektor [mm]n_i[/mm] als "Normalenvektor", der in der [mm]i[/mm]-ten Koordinate den Wert [mm]-d[/mm] und in den übrigen Koordinaten 1 hat. Zum Beispiel wird [mm]\Delta_1[/mm] von den [mm]d-1[/mm] Vektoren
[mm]\overrightarrow{A_2 A_3} \, , \ \overrightarrow{A_2 A_4} \, , \ \ldots \, , \ \overrightarrow{A_2 A_{d+1}}[/mm]
aufgespannt. Und auf all diesen Vektoren und auf [mm]n_H = (1,1,1,\ldots,1)[/mm] steht [mm]n_1 = (-d,1,1,\ldots,1)[/mm] senkrecht (Skalarprodukte berechnen!).
Das Ganze stimmt natürlich nur, wenn ich die von dir verwendeten Begriffe Tangentialhyperebene und "Normalenvektor" richtig interpretiert haben. Ansonsten kannst du diese Ausführungen vergessen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:11 Mo 05.03.2007 | Autor: | Imkeje |
Du hast die Begriffe Tangentialhyperebene und Normalenvektor ganz richtig verstanden! Vielen Dank für diese Ausführliche Hilfe! Hast mir sehr weiter geholfen!
|
|
|
|