Normalenvektor von Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 19:55 So 04.02.2007 | Autor: | RedLagoon |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Ich übe gerade für mein Vorabitur am Mittwoch und komme bei der Aufstellung einer Ebenengleichung einfach nicht weiter.
Es sind zwei Punkte der Ebene A (-1/3/-9) und B (0/0/0), sowie eine Ebene E: -2x+8y-16z-1 = 0, die zur gesuchten Ebene senkrecht steht, gegeben.
Ich habe Punkt A als Stützvektor genommen und Punkt B - Punkt A als ersten Richtungsvektor. Ich weiß, dass der Normalenvektor der Ebene E der zweite Richtungsvektor ist, doch wie stellt man den aus dieser parameterfreien Ebenengleichung auf?
Ich wäre sehr dankbar für Hilfe......!!
Liebe Grüße, Jana
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:33 So 04.02.2007 | Autor: | MayoP |
Hallo erstmal!
Dein Lösungsansatz ist soweit richtig.
Aus der parameterfreien Ebenengleichung bekommst du den Normalenvektor durch pures hinsehen heraus. Du musst dir nur klar machen was die Zahlen vor den Variablen zu bedeuten haben. Das sind doch die Schnittpunkte mit der jeweiligen Koordinatenachse. Wenn du die zu einem Vektor zusammenfügst, hast du mit ziemlicher sicherheit einen vektor der zu deiner Ebene senkrecht stehen muss.
Mehr sag i aber nicht!
viel Erfolg
mayo
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:14 So 04.02.2007 | Autor: | RedLagoon |
Danke für den Tipp!
Hab ich gar nicht gewusst, dass die Zahlen schon den Normalenvektor bilden...! Das macht das ganze ja wirklich einfach.
Aber eines verwirrt mich noch, dort wo ich die Aufgabe her habe, ist als Lösung angegeben: 60x+y-7z=0. Ist das dann falsch? Denn wenn ich mich nicht vertan habe, ist der Punkt (-1/3/-9) gar nicht auf dieser Ebene, senkrecht zu der anderen ist sie aber.
Meine Lösung ist 24x+2y-2z=0.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:10 Mo 05.02.2007 | Autor: | MayoP |
Hi!
Also die Lösung die da angegeben ist kann ja schlecht stimmen... Wenn ein gegebener Punkt der gesuchten Ebene zu keiner wahren Aussage führt, kann da was nicht stimmen. Kann natürlich ein Druckfehler sein, denn wenn man das plus vor dem y mit nem minus austauscht wird der Ausdruck wahr. Kannst ja mal schaun ob die Ebene dann immernoch senkrecht zur anderen steht. Denke mal nicht. Ich habe mal die Aufgabe gerechnet und bin auf das selbe Ergebniss gekommen wie du! Entweder haben wir beide den selben Fehler gemacht oder es ist einfach richtig! ^^ Beim Kreuzprodukt kann man sich ja schnell verrechnen...
gruß mayo
|
|
|
|