www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Normalform bei Kurvengleichung
Normalform bei Kurvengleichung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalform bei Kurvengleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:42 So 20.01.2013
Autor: ralfr

Hallo, ich habe eine Kurvengleichung gegeben durch
[mm] $x^2+y^2+xy-6x+10=0$ [/mm]

[mm] $x^tAx+2a^tx+a_0=0$ [/mm]
[mm] $A=\pmat{ 1 & 1 \\ 1 & 1 }$ [/mm]
[mm] $a^t=\vektor{-3 \\ 0}$ [/mm]
[mm] $a_0=30$ [/mm]

Eigenwerte:
[mm] $\lambda_1=0$ [/mm]
[mm] $\lambda_2=2$ [/mm]

Eigenvektoren
[mm] $\vektor{-1 \\ 1}$ [/mm]
[mm] $\vektor{1 \\ 1}$ [/mm]
dann ist [mm] $S=\frac{1}{\wurzel{2}}\pmat{ -1 & 1 \\ 1 & 1 }$ [/mm]

Also:
[mm] $0x^2+2y^2+2b^ty+a_0=0$ [/mm]
[mm] $b^t=a^tS$ [/mm]
[mm] $=\vektor{-3 \\ 0}*\frac{1}{\wurzel{2}}\pmat{ -1 & 1 \\ 1 & 1 }=\frac{1}{\wurzel{2}} \vektor{3 \\ -3}$ [/mm]
bleibt der lineare [mm] $y_1$ [/mm] Term : [mm] $\frac{3}{\wurzel{2}}y_1$ [/mm] einfach so bestehen? Oder muss ich den noch mit 2 multiplizieren? also [mm] $\frac{6}{\wurzel{2}}y_1$ [/mm] ?

quadratische Ergänzung liefert
[mm] $2y_2^2-2*\frac{3}{\wurzel{2}}y_2=2(y_2-\frac{3}{2\wurzel{2}})^2-\frac{18}{8}$ [/mm]

Also ist die Normalform:
[mm] $2z_2^2+ \frac{3}{\wurzel{2}}z_1 +10-\frac{18}{8}=0$ [/mm]
[mm] $2z_2^2+ \frac{3}{\wurzel{2}}z_1 +\frac{62}{8}=0$ [/mm]

wolframalpha gibt irgendwie etwas anderes aus. Wo liegt mein Fehler? es is laut wolframalpha.com ein parabolischer Zylinder. Aber in der Aufgabe steht ich soll die Normalform der Kurve bestimmen?
Also in meinen augen ist das eine Parabel?

        
Bezug
Normalform bei Kurvengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 22.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]