Normalformen < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 03:29 So 28.09.2014 | Autor: | ne1 |
Hallo.
Es geht um die kanonischen alternativen und konjunktiven Normalformen. Ich verstehe folgden Text nicht, bei dem, wenn ich das richtig sehe, die Defnition von Normalformen aufgeführt wird.
Es sei [mm] $(p_1,...,p_{i_n})$ [/mm] eine Folge von paarweise verschiedenen Aussagenvariablen, deren Indizes [mm] $i_i, [/mm] ..., [mm] i_n$ [/mm] der Größe nach geordnet seien. Es sei $k$ eine natürliche Zahl mit $1 [mm] \le [/mm] k [mm] \le 2^n$ [/mm] und $k-1 = [mm] \varepsilon_1(k) \cdot 2^{n-1} [/mm] + ... + [mm] \varepsilon_{n-1}(k) \cdot [/mm] 2 + [mm] \varepsilon_n(k)$ [/mm] die Dualdarstellung von $k-1$, also [mm] $e_v(k)$ [/mm] gleich $0$ oder $1$ für $v=1,...,n$. Unter der k-ten Elementarkonjunktion bezüglich [mm] $(p_{i_1}, ...,p_{i_n})$ [/mm] (mit [mm] $K_k(p_{i_1},...,p_{i_n}) [/mm] bezeichnet) verstehen wir den Ausdruck [mm] $\neg^{\varepsilon(k)}p_{i_n}\wedge [/mm] ... [mm] \wedge \neg^{e_n(k)}p_{i_n}$ [/mm] wobei [mm] $\neg^0 p_{i_v}$ [/mm] die Varable [mm] $p_{i_v}$ [/mm] und [mm] $\neg^1 p_{i_v}$ [/mm] deren Negation [mm] $\neg p_{i_v}$ [/mm] bedeutet.
Vielleicht noch kurz etwas zu der dualen Funktion. Unter dem zu $H$ dualen Ausdruck versteht man den Ausdruck [mm] $\delta [/mm] (H)$ der entsteht in dem man die Funktoren [mm] $\wedge$ [/mm] und [mm] $\vee$ [/mm] vertauscht.
Jetzt komme ich zu meiner eigentlichen Frage. Zuerst habe ich ein Problem mit dem Ausdruck $k-1 = [mm] \varepsilon_1(k) \cdot 2^{n-1} [/mm] + ... + [mm] \varepsilon_{n-1}(k) \cdot [/mm] 2 + [mm] \varepsilon_n(k)$. [/mm] Woher kommt der? Was bedeutet die linke Seite? Ist das eine Subtraktion? Ich kenne das Minuszeichen noch aus den boolschen Wahrheitsfunktionen z.b. $nicht(w) = 1 - w$, aber da $k [mm] \in \mathbb{N}$ [/mm] macht das irgendwie wenig Sinn. Was bedeutet die rechte Seite? Warum nimmt man da 2. Potenzen und was ist wiederum [mm] $\varepsilon$? [/mm] Soll es eine Funktion sein? Wenn ja, was für eine?
Das ganze ist mir unklar und in meinem Buch finde ich keine Erklärung dazu.
Vielleicht noch Beispiele, die ich dazu im Buch finde:
[mm] $K_1(p,q,r): [/mm] p [mm] \wedge [/mm] q [mm] \wedge [/mm] r$
[mm] $K_2(p,q,r): [/mm] p [mm] \wedge [/mm] q [mm] \wedge \neg [/mm] r$
[mm] $K_4(p,q,r): [/mm] p [mm] \wedge \neg [/mm] q [mm] \wedge [/mm] r$
usw.
Danke im Voraus.
(Außerdem, warum funktionieren die Dollarzeichen nicht richtig?)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:17 So 28.09.2014 | Autor: | hippias |
> Hallo.
>
> Es geht um die kanonischen alternativen und konjunktiven
> Normalformen. Ich verstehe folgden Text nicht, bei dem,
> wenn ich das richtig sehe, die Defnition von Normalformen
> aufgeführt wird.
>
> Es sei [mm]$(p_1,...,p_{i_n})$[/mm] eine Folge von paarweise
> verschiedenen Aussagenvariablen, deren Indizes [mm]$i_i,[/mm] ...,
> [mm]i_n$[/mm] der Größe nach geordnet seien. Es sei $k$ eine
> natürliche Zahl mit $1 [mm]\le[/mm] k [mm]\le 2^n$[/mm] und $k-1 =
> [mm]\varepsilon_1(k) \cdot 2^{n-1}[/mm] + ... + [mm]\varepsilon_{n-1}(k) \cdot[/mm]
> 2 + [mm]\varepsilon_n(k)$[/mm] die Dualdarstellung von $k-1$, also
> [mm]$e_v(k)$[/mm] gleich $0$ oder $1$ für $v=1,...,n$. Unter der
> k-ten Elementarkonjunktion bezüglich [mm]$(p_{i_1}, ...,p_{i_n})$[/mm]
> (mit [mm]$K_k(p_{i_1},...,p_{i_n})[/mm] bezeichnet) verstehen wir
> den Ausdruck [mm]$\neg^{\varepsilon(k)}p_{i_n}\wedge[/mm] ... [mm]\wedge \neg^{e_n(k)}p_{i_n}$[/mm]
> wobei [mm]$\neg^0 p_{i_v}$[/mm] die Varable [mm]$p_{i_v}$[/mm] und [mm]$\neg^1 p_{i_v}$[/mm]
> deren Negation [mm]$\neg p_{i_v}$[/mm] bedeutet.
>
> Vielleicht noch kurz etwas zu der dualen Funktion. Unter
> dem zu [mm]H[/mm] dualen Ausdruck versteht man den Ausdruck [mm]\delta (H)[/mm]
> der entsteht in dem man die Funktoren [mm]\wedge[/mm] und [mm]\vee[/mm]
> vertauscht.
>
> Jetzt komme ich zu meiner eigentlichen Frage. Zuerst habe
> ich ein Problem mit dem Ausdruck [mm]k-1 = \varepsilon_1(k) \cdot 2^{n-1} + ... + \varepsilon_{n-1}(k) \cdot 2 + \varepsilon_n(k)[/mm].
> Woher kommt der? Was bedeutet die linke Seite?
$k-1$ ist die Zahl, die man erhaelt, wenn $k$ um einen vermindert wird. Z.B. [mm] $k=6\Rightarrow [/mm] k-1=5$.
> Ist das eine
> Subtraktion? Ich kenne das Minuszeichen noch aus den
> boolschen Wahrheitsfunktionen z.b. [mm]nicht(w) = 1 - w[/mm], aber
> da [mm]k \in \mathbb{N}[/mm] macht das irgendwie wenig Sinn. Was
> bedeutet die rechte Seite? Warum nimmt man da 2. Potenzen
> und was ist wiederum [mm]\varepsilon[/mm]? Soll es eine Funktion
> sein? Wenn ja, was für eine?
Das ist die sogenannte Dualdarstellung der Zahl $k-1$. Beispielsweise ist $5= [mm] 1\cdot 2^{2}+0\cdot 2^{1}+ 1\cdot 2^{0}$. [/mm] Die [mm] $\varepsilon_{v}$ [/mm] stehen fuer die Ziffern der Dualdarstellung, welche nur die Werte $0$ und $1$ annehmen. Also hier [mm] $\varepsilon_{1}(5)= [/mm] 1$, [mm] $\varepsilon_{2}(5)= [/mm] 0$ und [mm] $\varepsilon_{3}(5)= [/mm] 1$. Das steht aber auch alles in dem Text, den Du eingetippt hast.
>
> Das ganze ist mir unklar und in meinem Buch finde ich keine
> Erklärung dazu.
>
> Vielleicht noch Beispiele, die ich dazu im Buch finde:
> [mm]K_1(p,q,r): p \wedge q \wedge r[/mm]
> [mm]K_2(p,q,r): p \wedge q \wedge \neg r[/mm]
>
> [mm]K_4(p,q,r): p \wedge \neg q \wedge r[/mm]
> usw.
>
> Danke im Voraus.
>
> (Außerdem, warum funktionieren die Dollarzeichen nicht
> richtig?)
Ja, das nervt. Besonders, wenn man keinen Schraubenzieher dabei hat.
|
|
|
|