www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 02.02.2019
Autor: Mathilda1

Aufgabe
Die Lebenserwartung von Geckos ist annähernd normalverteilt mit dem Erwartungswert 20 und der Standardabweichung in Jahren.
Die Wahrscheinlichkeit, dass Geckos älter als 25 Jahre werden, beträgt 11%
Bestimmen Sie die Wahrscheinlichkeit, dass die Lebenserwartung der Geckos um weniger als drei Jahre vom Erwartungswert abweicht.

Ich habe jetzt festgelegt
X — Alter in Jahren

P(17 kleiner gleich X größer gleich 23)

Jetzt würde ich die Wahrscheinlichkeit gerne mit dem GTR über den Befehl für Normalverteilung lösen. Dazu fehlt mir allerdings ein Wert für die Standardabweichung. Wie kann ich diese bestimmen?
Vielen Dank

        
Bezug
Normalverteilung: Standardabweichung berechnen
Status: (Antwort) fertig Status 
Datum: 19:06 Sa 02.02.2019
Autor: mathmetzsch

Hallo Mathilda1,

die Standardabweichung kannst du berechnen mit der folg. Information:
"Die Wahrscheinlichkeit, dass Geckos älter als 25 Jahre werden, beträgt 11%"

Dein Ansatz ist folglich:
[mm] \Phi (z)= P(X \leq 25) = 1 - P(X>25)[/mm]

Da du P(X>25)=0,11 gegeben hast, formst du danach um und setzt gleich:
[mm] \Phi (z)=1 - P(X>25) \gdw P(X>25) = 1 - \Phi (z) \gdw 0,11 = 1 - \Phi (z) \gdw \Phi (z) = 0,89[/mm]

Mit deinem CAS kannst du jetzt über die folg. Beziehung z berechnen und damit schließlich die Standardabweichung:
[mm] 0,89 = \int_{- \infty}^{z}{ \frac{1}{\sqrt{2 \pi}}*e^{(-0,5t^2)} dt}[/mm]

Es ergibt sich z mit in etwa 1,22653. Über die Beziehung [mm]z= \frac{k- \mu}{ \sigma}[/mm] kannst du nun die Standardabweichung berechnen.

Außerdem musst du bei der Angabe deines Intervalls um den Erwartungswert ein abgeschlossenes Intervall betrachten, was aber bei einer stetigen Verteilungsfunktion keinen Unterschied macht.

Viele Grüße, mathmetzsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]