Normalverteilung schwache Konv < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Untersuchen sie ob [mm] \mu_n =N(0,n) [/mm] und [mm] \nu_n =N(0,\bruch{1}{n}) [/mm] zwei Normalverteilte Wahrscheinlichkeitsverteilungen in Verteilung konvergieren. |
Okay fangen wir für [mm] \mu_n [/mm] an. Bei Konvergenz in Verteilung (oder schwache Konvergenz) ist nachzuprüfen ob [mm] \integral{f d\mu_n} \to \integral{f d\mu}[/mm] [mm] \forall n \to \infty [/mm] existiert. Wir wissen dass [mm] \integral{f d\mu_n} = \integral{f(t)*\wurzel{\bruch{n}{2\pi}} exp(-0.5t^2*n) dt [/mm]. Da [mm] \wurzel{n} \to \infty [/mm] dürfte es doch nicht konvergieren, na gut [mm] exp(-0.5t^2n) \to 0 [/mm] aber spielt das noch mit rein?
Machen wir erstmal für die 2te W-Verteilung weiter.
[mm] \integral{f d\nu_n} = \integral{f(t)*\wurzel{\bruch{1}{n*2\pi}} *exp(-0.5t^2*\bruch{1}{n}) dt [/mm]. Hier geht jeweils [mm] \wurzel{\bruch{1}{n*2\pi}} \to 0 [/mm] und [mm] exp(-0.5t^2*\bruch{1}{n}) \to 1 [/mm] also müsste diese Folge doch gegen 0 in Verteilung gehen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:37 Do 09.07.2009 | Autor: | vivo |
Hallo,
du musst erst integrieren und dann den Grenzwert bilden. Ausserdem musst du es für alle stetigen beschränkten Funktionen entweder zeigen oder widerlegen.
gruß
|
|
|
|
|
Erstmal danke für den Tipp. Aber [mm] wurzel{\bruch{n}{2\pi} [/mm] kann ich ja vorziehen. Und geht damit ja immer noch gegen unendlich. Die Integration ist ja nicht so ohne weiteres möglich...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:56 Do 09.07.2009 | Autor: | vivo |
> Erstmal danke für den Tipp. Aber [mm]wurzel{\bruch{n}{2\pi}[/mm]
> kann ich ja vorziehen. Und geht damit ja immer noch gegen
> unendlich. Die Integration ist ja nicht so ohne weiteres
> möglich...
ja das kannst du schon aus dem integral ziehen ... aber nur weil der teil alleine beliebig groß werden würde wenn n gegen unendlich geht, muss dass noch nicht heißen, dass der gesamte ausdruck nicht gegen einen grenzwert gehen würde.
gruß
|
|
|
|
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Richtig aber wie könnt man jetzt weiter vorgehen?
Das integral kann man ja so nicht berechnen.
Bei der letzten könnte man es vielleicht abschätzen in dem man $ \integral{f(t)\cdot{}\wurzel{\bruch{1}{n\cdot{}2\pi}} \cdot{}exp(-0.5t^2\cdot{}\bruch{1}{n}) dt <= \integral{f(t)\cdot{}\wurzel{\bruch{1}{n\cdot{}2\pi}} \cdot{}exp(0) dt =\integral{f(t)\cdot{}\wurzel{\bruch{1}{n\cdot{}2\pi}} \cdot{} dt $
Nun bräuchte man ja nicht mehr das Integral berechnen und hätte eine Konvergente majorante was einen zumindest schonmal verrät das es konvergiert...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:41 Do 09.07.2009 | Autor: | vivo |
Hallo,
ohne gewähr würde ich beim ersten sagen:
[mm]\mu_n (A) = \int_A \phi_{0; n}(x) dx[/mm]
mit [mm]\phi_{0; n}(x)[/mm] dichte (Radon Nikodym zum lebesgue Maß) der Normalverteilung mit Erwartungswert 0 und Varianz n
Nun kann man den Satz der majorisierten Konvergenz anwenden da die Dichte für alle n ja durch die Konstante Funktion 1 beschränkt ist denn der höchste Punkt der Dichte ist ja für x=0 [mm] \bruch{1}{\wurzel{2 \pi n}} [/mm] und damit immer kleiner als 1.
[mm]\limes_{n\rightarrow\infty} \mu_n (A) =\limes_{n\rightarrow\infty} \int_A \phi_{0; \bruch{1}{n}}(x) dx = \int_A 0 dx = 0[/mm]
somit wissen wir, dass [mm]\limes_{n\rightarrow\infty} \mu_n (A) = 0[/mm] für alle messbaren A, deshalb folgt nach dem Portemanteau Theorem:
dass [mm] \mu_n [/mm] schwach gegen dass Nullmaß konvergiert.
gruß
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Sa 11.07.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|