www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Notation Stetigkeit von Maßen
Notation Stetigkeit von Maßen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notation Stetigkeit von Maßen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:43 Fr 26.09.2014
Autor: Cccya

Ich habe eine Frage zur Notation beim Beweis der Stetigkeit eines
Wahrscheinlichkeitsmaßes. Dabei stellt man ja eine Vereinigung als disjunkte
Vereinigung dar. Ich habe das so gefunden: [mm] \bigcup_{i=1}^{\infty} A_{i}= \bigcup_{i=1}^{\infty} (A_{i}\backslash A_{i-1}). [/mm] Für mich müsste es aber eigentlich so aussehen  [mm] \bigcup_{i=1}^{\infty} A_{i}= \bigcup_{i=1}^{\infty} (A_{i}\backslash \bigcup_{j=1}^{i-1}A_{j}) [/mm]
Sprich das [mm] A_{i} [/mm] muss jeweils ohne Überschneidung mit allen vorangegangenen Folgegliedern sein, nicht nur mit dem direkt vorangegangenen, sonst ist doch die Vereinigung nicht paarweise disjunkt? Also meine Frage, sind diese Notationen äquivalent und wenn ja, warum?

        
Bezug
Notation Stetigkeit von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Fr 26.09.2014
Autor: DieAcht

Hallo,


Ich finde deine Ausführung ziemlich chaotisch. Meine Kristall-
kugel sagt mir, dass wir hier eigentlich

      [mm] \green{A}=\bigcup_{i=1}^{\infty}(A_i\setminus A_{i-1}), [/mm]

betrachten müssen. Bist du dir sicher, dass in deinem Skript

      [mm] \red{\bigcup_{i=1}^{\infty}A_i}=\bigcup_{i=1}^{\infty}(A_i\setminus A_{i-1}). [/mm]

steht?


Vielleicht nochmal "anschaulicher":

Sei [mm] $A_n\uparrow [/mm] A$. Mit [mm] A_0:=\emptyset [/mm] definieren wir

      [mm] $B_n:=A_n\setminus A_{n-1}$ [/mm] für alle [mm] n\in\IN. [/mm]

Dann sind die Mengen

      [mm] B_1,B_2,\ldots [/mm]

paarweise disjunkt und ihre Vereinigung ist [mm] $A\$. [/mm] In Notation:

      [mm] A=\bigcup_{i=1}^{\infty}B_n=\bigcup_{i=1}^{\infty}(A_n\setminus A_{n-1}). [/mm]

Mach dir die Voraussetzung [mm] $A_n\uparrow [/mm] A$ klar und denk dann noch
einmal über disjunkte bzw. paarweise disjunkte Mengen nach.


Falls ich mich irre, dann ist bestimmt Gono bald zur Stelle. :-)


Gruß
DieAcht

Bezug
                
Bezug
Notation Stetigkeit von Maßen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Fr 26.09.2014
Autor: Cccya

Hi,

sry für die chaotische Präsentation, ich bin etwas aus der Übung was Mathe angeht. Aber ich glaube ich habs jetzt verstanden, ich hatte nicht daran gedacht, dass [mm] A_{n} [/mm] eine aufsteigende Folge ist. In [mm] A_{n-1} [/mm] sind ja alle vorangegangenen Folgeglieder schon enthalten deshalb ist [mm] \bigcup_{n=1}^{\infty}(A_n\setminus A_{n-1}) [/mm] paarweise disjunkt oder?
Aber A = [mm] \bigcup_{n=1}^{\infty}A_{n} [/mm] für Stetigkeit von unten und A = [mm] \bigcap_{n=1}^{\infty} A_{n} [/mm] für Stetigkeit von oben laut meinem Skript.

Auf jedenfall danke schonmal!



Bezug
                        
Bezug
Notation Stetigkeit von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Fr 26.09.2014
Autor: DieAcht


> In [mm]A_{n-1}[/mm] sind ja alle
> vorangegangenen Folgeglieder schon enthalten deshalb ist
> [mm]\bigcup_{n=1}^{\infty}(A_n\setminus A_{n-1})[/mm] paarweise
> disjunkt oder?

Das ist viel zu ungenau. Unsere Voraussetzung

[mm] $A_n\uparrow [/mm] A$ für [mm] n\to\infty [/mm] heißt, dass [mm] A_{n}\subseteq A_{n+1} [/mm] für alle [mm] n\in\IN [/mm] und [mm] \bigcup_{n\in\IN}A_n=A [/mm] gilt.

Aus obigem Grund können wir schreiben (siehe andere Antwort)

      [mm] A=\bigcup_{n\in\IN}(A_n\setminus A_{n-1}) [/mm] für alle [mm] n\in\IN [/mm] mit [mm] A_0:=\emptyset. [/mm]

Die Mengen [mm] $(A_n\setminus A_{n-1})$ [/mm] für alle [mm] n\in\IN [/mm] sind paarweise disjunkt.
Damit stellen wir [mm] $A\$ [/mm] als eine Vereinigung disjunkter Mengen dar!

>  Aber A = [mm]\bigcup_{n=1}^{\infty}A_{n}[/mm] für Stetigkeit von
> unten und A = [mm]\bigcap_{n=1}^{\infty} A_{n}[/mm] für Stetigkeit
> von oben laut meinem Skript.

[mm] $A_n\downarrow [/mm] A$ für [mm] n\to\infty [/mm] heißt, dass [mm] A_{n+1}\subseteq A_{n} [/mm] für alle [mm] n\in\IN [/mm] und [mm] \bigcap_{n\in\IN}A_n=A [/mm] gilt.

Bezug
        
Bezug
Notation Stetigkeit von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Fr 26.09.2014
Autor: Gonozal_IX

Hiho,

eigentlich hat DieAcht bereits alles dazu geschrieben.
Meine Kristallkugel sagt mir, dass du eine Aufsteigende Folge von Mengen [mm] A_i [/mm] betrachtest, daher gilt:

[mm] $A_{i-1} [/mm] = [mm] \bigcup_{j=1}^{i-1} A_j$ [/mm]

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]