Nullstelle Polynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:04 Mi 08.11.2023 | Autor: | Euler123 |
Aufgabe | Berechnen Sie alle Nullstellen inklusive Vielfachheiten des Polynoms [mm] f=(X^3)-2 [/mm] |
Mir ist dazu folgende Lösung gegeben:
i) [mm] X^{3}=2 [/mm] hat keine Lösung über Q.
ii) [mm] X^{3}=2 \Rightarrow \lambda_{1}=\sqrt[3]{2} [/mm] ist eine Lösung zu der Gleichung. Es folgt, dass es g [mm] \in \mathbb{R}[X] [/mm] gibt, so dass [mm] f=(X-\sqrt[3]{2}) [/mm] g. Mit der Hilfe des Divisionsalgorithmus finden wir [mm] g=X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}. [/mm] Wir benutzen nun die Lösungsformel einer quadratischen Gleichung:
[mm] X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}=0 \Rightarrow \lambda_{2,3}=-\frac{\sqrt[3]{2}}{2} \pm \sqrt{\frac{\sqrt[3]{4}}{4}-\sqrt[3]{4}} \notin \mathbb{R}
[/mm]
Es folgt, dass [mm] X^{2}+\sqrt[3]{2} X+\sqrt[3]{4} [/mm] über [mm] \mathbb{R} [/mm] irreduzibel ist. D.h. [mm] X^{3}-2=(X- \sqrt[3]{2})\left(X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}\right) [/mm] . f hat 1 Nullstelle deren Vielfachheit gleich 1 ist.
iii) Über C hat die Gleichung [mm] X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}=0 [/mm] zwei Lösungen
[mm] \lambda_{2,3}=-\frac{\sqrt[3]{2}}{2} \pm \frac{\sqrt[6]{108}}{4} [/mm] i
Daraus folgt [mm] X^{3}-2=(X-\sqrt[3]{2})\left(X-\lambda_{2}\right)\left(X-\lambda_{3}\right) [/mm] . f hat 3 Nullstellen deren Vielfachheiten gleich 1 sind.
Allerdings ist mir keine Definition zum Divisionsalgorithmus gegeben - daher meine Frage, ob mir jemand das dahinter stehende Prinzip erläutern kann, oder ob die Aufgabe auch ohne Lösbar ist (und wenn wie?)!
Danke im Voraus!
"Ich habe diese Frage in keinem anderen Forum gestellt"
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:29 Do 09.11.2023 | Autor: | statler |
Guten Morgen!
> Berechnen Sie alle Nullstellen inklusive Vielfachheiten des
> Polynoms [mm]f=(X^3)-2[/mm]
> Mir ist dazu folgende Lösung gegeben:
>
> i) [mm]X^{3}=2[/mm] hat keine Lösung über Q.
> ii) [mm]X^{3}=2 \Rightarrow \lambda_{1}=\sqrt[3]{2}[/mm] ist eine
> Lösung zu der Gleichung. Es folgt, dass es g [mm]\in \mathbb{R}[X][/mm]
> gibt, so dass [mm]f=(X-\sqrt[3]{2})[/mm] g. Mit der Hilfe des
> Divisionsalgorithmus finden wir [mm]g=X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}.[/mm]
> Wir benutzen nun die Lösungsformel einer quadratischen
> Gleichung:
>
> [mm]X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}=0 \Rightarrow \lambda_{2,3}=-\frac{\sqrt[3]{2}}{2} \pm \sqrt{\frac{\sqrt[3]{4}}{4}-\sqrt[3]{4}} \notin \mathbb{R}[/mm]
>
> Es folgt, dass [mm]X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}[/mm] über
> [mm]\mathbb{R}[/mm] irreduzibel ist. D.h. [mm]X^{3}-2=(X- \sqrt[3]{2})\left(X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}\right)[/mm]
> . f hat 1 Nullstelle deren Vielfachheit gleich 1 ist.
> iii) Über C hat die Gleichung [mm]X^{2}+\sqrt[3]{2} X+\sqrt[3]{4}=0[/mm]
> zwei Lösungen
>
> [mm]\lambda_{2,3}=-\frac{\sqrt[3]{2}}{2} \pm \frac{\sqrt[6]{108}}{4}[/mm]
> i
Stimmt nicht ganz, [mm] $\lambda_{2,3}=-\frac{\sqrt[3]{2}}{2} \pm \frac{\sqrt[6]{108}}{2} \cdot [/mm] i $
>
> Daraus folgt
> [mm]X^{3}-2=(X-\sqrt[3]{2})\left(X-\lambda_{2}\right)\left(X-\lambda_{3}\right)[/mm]
> . f hat 3 Nullstellen deren Vielfachheiten gleich 1 sind.
>
>
> Allerdings ist mir keine Definition zum
> Divisionsalgorithmus gegeben - daher meine Frage, ob mir
> jemand das dahinter stehende Prinzip erläutern kann, oder
> ob die Aufgabe auch ohne Lösbar ist (und wenn wie?)!
Du berechnest g durch Polynomdivision, siehe hier oder hier.
Oder du benutzt die Exponential- oder die trigonometrische Darstellung für komplexe Zahlen, anderer Weg.
Gruß Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:14 Do 09.11.2023 | Autor: | Euler123 |
Hallo Dieter,
Ich bedanke mich abermals für deine rasche Antwort und den alternativen Weg! Mittels dem Video in dem zweiten Link habe ich jetzt aber auch die Polynomdivision richtig verstanden und laut Lösung korrekt nachgerechnet!
Ich wünsche dir noch einen schönen Tag :)
LG Euler
|
|
|
|
|
Die Gleichung [mm] z^3 [/mm] = a $ (a [mm] \in \IC\ [/mm] ,\ a [mm] \not= [/mm] 0)$
in der Menge der komplexen Zahlen hat stets drei Lösungen, welche (als Punkte in der komplexen Zahlenebene dargestellt) ein gleichseitiges Dreieck mit dem Schwerpunkt im Ursprung darstellen.
Alle drei Lösungen haben den Betrag |z| = [mm] $\wurzel[3]{|a|}$ [/mm] , und die Argumente kann man schreiben als
[mm] $\arg(z_i) [/mm] = arg(a)/3 + i * [mm] 2\pi/3 [/mm] $
|
|
|
|