www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Nullstellen bei E-Funktion
Nullstellen bei E-Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen bei E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Sa 27.01.2007
Autor: Joerg079

Aufgabe
[mm] f(x)=x^{2}-3+e^{x} [/mm]
[mm] f'(x)=2x+e^{x} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gibt es für diese Funktionen einen konventionellen Lösungsweg oder sind die Nullstellen (und Extrema) nur über ein Näherungsverfahren zu ermitteln?

        
Bezug
Nullstellen bei E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Sa 27.01.2007
Autor: Stefan-auchLotti


> [mm]f(x)=x^{2}-3+e^{x}[/mm]
>  [mm]f'(x)=2x+e^{x}[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Gibt es für diese Funktionen einen konventionellen
> Lösungsweg oder sind die Nullstellen (und Extrema) nur über
> ein Näherungsverfahren zu ermitteln?  

[mm] $\rmfamily \text{Hi, wie du schon sagst, geht es definitiv nur mit Näherungsverfahren.}$ [/mm]

[mm] $\rmfamily \text{Gruß, Stefan.}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]