www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Nullstellen bei E-Funktion
Nullstellen bei E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen bei E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Mo 03.01.2011
Autor: MichaKA

Aufgabe
Bestimmen Sie die Schnittpunkte mit der x-Achse zu f(x)=(2/e)*x + [mm] e^{-x^2}. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Meine erste Idee war: (2/e)*x = [mm] -e^{-x^2}. [/mm] Aber dann sah ich keine Möglichkeit mehr voranzukommen, weil sich nichts ausklammern ließ. Kann man hier logarithmieren? Falls ja: wie??? Bereite mich gerade auf eine Klausur nächste Woche vor, fände jede Hilfe mit ausführlichem Lösungsweg super!!!

        
Bezug
Nullstellen bei E-Funktion: Näherungsverfahren
Status: (Antwort) fertig Status 
Datum: 17:29 Mo 03.01.2011
Autor: Loddar

Hallo micha,

[willkommenmr] !!


Diese Gleichung lässt sich m.E. gar nicht nach [mm]x \ = \ ...[/mm] umstellen, so dass Du hier ein Näherungsverfahren wie z.B. das MBNewton-Verfahren anwenden musst.

Es existiert eine Nullstelle mit [mm]x_N \ \approx \ -0{,}761[/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]