www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Nullstellenfunktion
Nullstellenfunktion < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:01 So 14.09.2014
Autor: ttl

Aufgabe
Aufstellen von Nullstellenfunktion

Hallo,

ich hätte eine Frage zum Aufstellen von Nullstellenfunktionen.

Angenommen man müsse für folgende Werte eine Nullstellenfunktionen aufstellen:

[mm] (1)^{n}\sqrt{a} [/mm]
[mm] (2)\frac{1}{^{n}\sqrt{a}} [/mm]
wobei [mm] a\in\IR [/mm]

[mm] (3)\frac{1}{d} [/mm]  , wobei d > 0

Dabei gehe ich folgendermaßen vor:

Ich stelle dabei folgende Gleichung auf: (1) : f(x) = [mm] ^{n}\sqrt(a) [/mm] = x

Dann forme ich diese Gleichung um:
f(x) = a = [mm] x^{n} [/mm] => f(x) = [mm] x^n-a [/mm] = 0

(2) f(x) = [mm] \frac{1}{^{n}\sqrt{a}} [/mm] = x =>f(x) = [mm] \frac{1}{a} [/mm] = [mm] x^n [/mm] => f(x) = [mm] x^n [/mm] - a

Hätte man (2) auch anders formen können? Z.B:

f(x) = [mm] \frac{1}{a} [/mm] = [mm] x^n [/mm] => f(x) = 1 = [mm] ax^{n} [/mm] = [mm] ax^{n} [/mm] -1 = 0
Ist dies auch erlaubt oder gibt es eine bestimmte Form der Nullstellengleichung?

(3) f(x) = [mm] \frac{1}{d} [/mm] = x => f(x) = x - [mm] \frac{1}{d} [/mm]   oder f(x) = 1 = dx => f(x) = [mm] \frac{1}{x} [/mm] = d => f(x) = [mm] \frac{1}{x} [/mm] -d = 0

Was ist mit diesem Beispiel? Ist die eine Form besser als die andere oder sind beide legitim?


Viele Grüße
ttl

        
Bezug
Nullstellenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 So 14.09.2014
Autor: MathePower

Hallo ttl,

> Aufstellen von Nullstellenfunktion
>  Hallo,
>  
> ich hätte eine Frage zum Aufstellen von
> Nullstellenfunktionen.
>  
> Angenommen man müsse für folgende Werte eine
> Nullstellenfunktionen aufstellen:
>  
> [mm](1)^{n}\sqrt{a}[/mm]


Die n-te Wurzel aus a wird im Formeleditor so geschrieben:

\wurzel[n]{a}

Das ergibt dann:  [mm]\wurzel[n]{a}[/mm]


>  [mm](2)\frac{1}{^{n}\sqrt{a}}[/mm]
>  wobei [mm]a\in\IR[/mm]
>  
> [mm](3)\frac{1}{d}[/mm]  , wobei d > 0
>  
> Dabei gehe ich folgendermaßen vor:
>  
> Ich stelle dabei folgende Gleichung auf: (1) : f(x) =
> [mm]^{n}\sqrt(a)[/mm] = x
>  
> Dann forme ich diese Gleichung um:
>  f(x) = a = [mm]x^{n}[/mm] => f(x) = [mm]x^n-a[/mm] = 0

>  


[ok]


> (2) f(x) = [mm]\frac{1}{^{n}\sqrt{a}}[/mm] = x =>f(x) = [mm]\frac{1}{a}[/mm]
> = [mm]x^n[/mm] => f(x) = [mm]x^n[/mm] - a

>


Das muss doch so lauten:

[mm]x^n- \red{\bruch{1}{a}} =0[/mm]


> Hätte man (2) auch anders formen können? Z.B:
>  
> f(x) = [mm]\frac{1}{a}[/mm] = [mm]x^n[/mm] => f(x) = 1 = [mm]ax^{n}[/mm] = [mm]ax^{n}[/mm] -1 =
> 0
>  Ist dies auch erlaubt oder gibt es eine bestimmte Form der
> Nullstellengleichung?
>  


Natürlich ist dies erlaubt.


> (3) f(x) = [mm]\frac{1}{d}[/mm] = x => f(x) = x - [mm]\frac{1}{d}[/mm]   oder
> f(x) = 1 = dx => f(x) = [mm]\frac{1}{x}[/mm] = d => f(x) =
> [mm]\frac{1}{x}[/mm] -d = 0
>  
> Was ist mit diesem Beispiel? Ist die eine Form besser als
> die andere oder sind beide legitim?
>  


Beide sind legitim.


>
> Viele Grüße
>  ttl


Gruss
MathePower

Bezug
        
Bezug
Nullstellenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 So 14.09.2014
Autor: DieAcht

Hallo,


Im Allgemeinen kann man verschiedene Fixpunktgleichungen erhalten,
aber die Aufgabe besteht darin eine zu "wählen", die uns auch zum
Ziel führt (Konvergenz). "Schnelligkeit" spielt natürlich auch eine
Rolle. Die Grundlage basiert auf dem Fixpunktsatz von Banach und
diesen solltest du dir genau anschauen.

> Angenommen man müsse für folgende Werte eine Nullstellenfunktionen aufstellen:

Das ist zwar gut, dass du dich damit befassen willst, aber du
musst gründlicher arbeiten. Das will ich nun nicht alles aus-
einander nehmen, aber hier mal ein Beispiel:

> [mm](1)^{n}\sqrt{a}[/mm]
>  [mm](2)\frac{1}{^{n}\sqrt{a}}[/mm]
>  wobei [mm]a\in\IR[/mm]

Was passiert zum Beispiel mit [mm] $a\le 0\$? [/mm]

Wenn man wirklich gründlich arbeitet, dann erkennt man auch seine
Probleme und kann sich gezielter damit auseinandersetzen.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]