Nullstellens. Bolzano, Beweis < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:47 So 27.04.2014 | Autor: | drossel |
Hallo
ich habe ein paar Fragen zum Beweis vom Nullstellensatz von Bolzano.
Der Satz: Seien [mm] a,b\in \mathbb{R} [/mm] mit a<b und [mm] f:[a,b]\to \mathbb{R} [/mm] stetig, [mm] f(a)\le [/mm] 0 [mm] \le [/mm] f(b). So existiert ein [mm] x_0\in [/mm] [a,b] mit [mm] f(x_0)=0.
[/mm]
Beweis:
Nehmen an, dass f(a)<0 und f(b)>0. Betrachte [mm] M:=\{x\in [a,b]: f(x)\le 0\}. [/mm] Klar: M beschränkt (insbes. nach oben beschränkt also) und nichtleere Teilmenge von [mm] \mathbb{R}. [/mm] Dh. es existiert sup(M)=:s (hier benutzt man die Supremumsvollständigkeit von den reellen Zahlen).
Da s kleinste obere Schranke, ist für jedes [mm] n\in \mathbb{N} \, s-\frac{1}{n} [/mm] keine obere Schranke mehr von M. Dh. zu jedem [mm] n\in \mathbb{N} [/mm] existiert ein [mm] x_n\in \mathbb{N}, [/mm] sd. [mm] s-\frac{1}{n}
Bis zu der Stelle im Beweis habe ich alles verstanden.
Ab jetzt habe ich aber Verständnisprobleme, ich schreibe meine Fragen in eckigen Klammern an den Stellen. Es geht weiter mit:
Angenommen, f(s)<0, da f stetig in s, existiert ein [mm] \delta [/mm] >0 s.d. f(x)<0 für alle [mm] x\in (s-\delta, s+\delta) [/mm] (*)
Genauso folgt aus der linksseitigen Stetigkeit von f in b und der Tatsache, dass f(b)>0 ist, dass f in einer linksseitigen Umgebung von b strikt positiv ist [kann man die letzten beiden Sätze oder den letzten Satz irgendwie detaillierter aufschreiben/ genauer begründen wieso das so ist?]
Folglich kann [mm] \delta [/mm] >0 in (*) so klein gewählt werden, dass gilt : [mm] (s-\delta, s+\delta [/mm] ) [mm] \subseteq [/mm] [a,b] [das versehe ich nicht ganz, dann muss ja s>a sein, aber wieso soll das gelten?].
Dann ist ( [mm] s-\delta, s+\delta [/mm] ) [mm] \subseteq [/mm] M und s kann nicht kleinste obere Schranke sein [kann man das wirklich so begründen? Das Intervall ist doch offen... ]. Dh es muss f(s)=0 gelten.
Also was mir vor allem auf dem Herzen liegt ist das was ich in den letzten beiden eckigen Klammern geschrieben habe, das verstehe ich leider garnicht...
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:15 Mo 28.04.2014 | Autor: | Teufel |
Hi!
> Angenommen, f(s)<0, da f stetig in s, existiert ein [mm]\delta[/mm]
> >0 s.d. f(x)<0 für alle [mm]x\in (s-\delta, s+\delta)[/mm] (*)
> Genauso folgt aus der linksseitigen Stetigkeit von f in b
> und der Tatsache, dass f(b)>0 ist, dass f in einer
> linksseitigen Umgebung von b strikt positiv ist [kann man
> die letzten beiden Sätze oder den letzten Satz irgendwie
> detaillierter aufschreiben/ genauer begründen wieso das so
> ist?]
Das ist im Prinzip das [mm] $\varepsilon-\delta-$Kriterium [/mm] im Punkt $s$ bzw. b. Sei also $f(s)<0$, d.h. [mm] $f(s)=-\varepsilon$ [/mm] für ein [mm] $\varepsilon>0$. [/mm] Da $f$ stetig in $s$ ist, kannst du für dieses [mm] \varepsilon [/mm] ein [mm] \delta [/mm] finden mit [mm] $|x-s|<\delta$ \Rightarrow $|f(x)-f(s)|<\varepsilon$. [/mm] Daraus folgt die Aussage.
> Folglich kann [mm]\delta[/mm] >0 in (*) so klein gewählt werden,
> dass gilt : [mm](s-\delta, s+\delta[/mm] ) [mm]\subseteq[/mm] [a,b] [das
> versehe ich nicht ganz, dann muss ja s>a sein, aber wieso
> soll das gelten?].
Das gilt, weil f(a)<0 ganz am Anfang vorausgesetzt wurde. Auch wegen dem [mm] $\varepsilon-\delta-$Kriterium [/mm] im Punkt $a$ folgt, dass es ein etwas größeres Element $a'>a$ gibt mit $f(a')<0$, also ist [mm] $s\ge [/mm] a'>a$.
> Dann ist ( [mm]s-\delta, s+\delta[/mm] ) [mm]\subseteq[/mm] M und s kann
> nicht kleinste obere Schranke sein [kann man das wirklich
> so begründen? Das Intervall ist doch offen... ]. Dh es
> muss f(s)=0 gelten.
Annahme war ja, dass [mm] $s=\sup [/mm] M$ gilt. Nun ist aber z.B. [mm] ss$, [/mm] was ein Widerspruch ist.
>
> Also was mir vor allem auf dem Herzen liegt ist das was ich
> in den letzten beiden eckigen Klammern geschrieben habe,
> das verstehe ich leider garnicht...
>
> Gruß
>
>
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:16 Fr 02.05.2014 | Autor: | drossel |
Hallo, vielen Dank für deine Ausführungen. Damit habe ich es nun verstanden. Grüße
|
|
|
|