Nullteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:46 Mi 21.12.2011 | Autor: | chesn |
Aufgabe | Sei R ein kommutativer Ring. Beweisen Sie folgende Aussagen:
(i) Die Kürzungsregel rs = rt [mm] \Rightarrow [/mm] s = t gilt genau dann, wenn r kein Nullteiler ist. (Zeigen Sie für die eine Richtung folgende stärkere Aussage: wenn r ein Nullteiler ist, dann besitzt die Gleichung rx = s entweder keine, oder mehrere Lösungen.
(ii) Der Ring R ist genau dann ein Körper, wenn für alle r, s [mm] \in [/mm] R mit [mm] r\not= 0_R [/mm] die Gleichung rx = s eine eindeutige Lösung in R besitzt.
(iii) Der Ring R habe mindestens fünf Elemente. Die quadratische Gleichung [mm] x^2-rx+s [/mm] = 0 hat genau dann für alle r,s [mm] \in [/mm] R höchstens zwei Lösungen, wenn R ein Integritätsbereich ist. |
Hallo! Wäre nett wenn jemand drüber gucken und ein paar Tipps geben könnte.
(i) rs=rt => rs-rt=0 => r(s-t)=0 (*)
"=>" Es gelte: rs=rt => s=t .
Wäre r ein Nullteiler, so wäre (*): r(s-t)=0 für alle [mm] s,t\in [/mm] R, also auch für [mm] s\not= [/mm] t. Es ist aber s=t, damit kann r kein Nullteiler sein.
"<=" Angenommen r wäre ein Nullteiler, dann würde gelten: rx=s [mm] \gdw [/mm] 0=s.
Mit s=0 gibt es dann mehrere Lösungen für x, für [mm] s\not= [/mm] 0 ist 0=s eine falsche Aussage und es gibt folglich keine Lösung für x. Reicht das alles so?
(ii) "=>" Sei R ein Körper, dann ist R Nullteilerfrei und damit folgt aus (i), dass rx=s eine eindeutige Lösung in R besitzt.
"<=" rx=s besitze eine eindeutige Lösung in R. Dann ist diese Lösung gegeben durch [mm] x=r^{-1}s. [/mm] R besitzt also (da r beliebig gewählt) zu jedem Element ein Inverses. Weiter gilt: [mm] r,r^{-1}\in [/mm] R => [mm] r*r^{-1}=1_R [/mm] , also liegt das Einselement auch in R.
(iii) "<=" Sei R ein Integritätsbereich, also insbesondere Nullteilerfrei.
Hier fällt mir so recht keine Argumentation ein.. ich dachte daran, vielleicht die ganze Gleichung mit r zu multiplizieren: [mm] r*(x^2-rx+s)=0 [/mm] und zu folgern, dass wenn r ein Nullteiler wäre, es mehr als 2 Lösungen gäbe. (?)
"=>" [mm] x^2-rx+s=0 [/mm] habe höchstens 2 Lösungen.
Hier fällt mir auch bestenfalls obige Argumentation ein, wobei ich nicht beurteilen kann wie sinnvoll diese ist: [mm] x^2-rx+s=0 [/mm] habe höchstens 2 Lösungen, dann hat [mm] r(x^2-rx+s)=0 [/mm] ebenfalls höchstens 2 Lösungen. Damit kann r aber kein Nullteiler sein, da es sonst mehrere Lösungen gäbe, also ist (da r beliebig) R Nullteilerfrei, also ein Integritätsring.
Jetzt hat aber ein Integritätsring ein Einselement.. kann ich das daraus folgern, dass R mindestens fünf Elemente besitzt??
Danke fürs drüber schauen schonmal!! :]
|
|
|
|
> Sei R ein kommutativer Ring. Beweisen Sie folgende
> Aussagen:
>
> (i) Die Kürzungsregel rs = rt [mm]\Rightarrow[/mm] s = t gilt genau
> dann, wenn r kein Nullteiler ist. (Zeigen Sie für die eine
> Richtung folgende stärkere Aussage: wenn r ein Nullteiler
> ist, dann besitzt die Gleichung rx = s entweder keine, oder
> mehrere Lösungen.
>
> (ii) Der Ring R ist genau dann ein Körper, wenn für alle
> r, s [mm]\in[/mm] R mit [mm]r\not= 0_R[/mm] die Gleichung rx = s eine
> eindeutige Lösung in R besitzt.
>
> (iii) Der Ring R habe mindestens fünf Elemente. Die
> quadratische Gleichung [mm]x^2-rx+s[/mm] = 0 hat genau dann für
> alle r,s [mm]\in[/mm] R höchstens zwei Lösungen, wenn R ein
> Integritätsbereich ist.
> Hallo! Wäre nett wenn jemand drüber gucken und ein paar
> Tipps geben könnte.
>
> (i) rs=rt => rs-rt=0 => r(s-t)=0 (*)
>
> "=>" Es gelte: rs=rt => s=t .
> Wäre r ein Nullteiler, so wäre (*): r(s-t)=0 für alle
> [mm]s,t\in[/mm] R, also auch für [mm]s\not=[/mm] t. Es ist aber s=t, damit
> kann r kein Nullteiler sein.
>
> "<=" Angenommen r wäre ein Nullteiler, dann würde gelten:
> rx=s [mm]\gdw[/mm] 0=s.
> Mit s=0 gibt es dann mehrere Lösungen für x, für [mm]s\not=[/mm]
> 0 ist 0=s eine falsche Aussage und es gibt folglich keine
> Lösung für x. Reicht das alles so?
r Nullteiler heißt nicht rx=0 für alle x, sonders dass es ein [mm] x\ne [/mm] 0 gibt mit rx=0.
Daher musst du deine Argumente entsprechend modifizieren.
>
> (ii) "=>" Sei R ein Körper, dann ist R Nullteilerfrei und
> damit folgt aus (i), dass rx=s eine eindeutige Lösung in R
> besitzt.
So folgt nur, dass wenn es eine Lösung gibt, diese eindeutig sein muss. Für die Existenz der Lösung musst du mit inversen Elementen argumentieren
>
> "<=" rx=s besitze eine eindeutige Lösung in R. Dann ist
> diese Lösung gegeben durch [mm]x=r^{-1}s.[/mm] R besitzt also (da r
> beliebig gewählt) zu jedem Element ein Inverses. Weiter
> gilt: [mm]r,r^{-1}\in[/mm] R => [mm]r*r^{-1}=1_R[/mm] , also liegt das
> Einselement auch in R.
Hier brauchst du nur die Gleichung rx=1 zu betrachten, die dann ein Inverses zu r liefert.
>
> (iii) "<=" Sei R ein Integritätsbereich, also insbesondere
> Nullteilerfrei.
Wenn es zwei Lösungen [mm] x_1,x_2 [/mm] gibt, kannst du folgern [mm] x^2-rx+s=(x-x_1)*(x-x_2).
[/mm]
Aufgrund der Nullteilerfreiheit folgt, dass es keine weiteren Nullstellen geben kann.
>
> Hier fällt mir so recht keine Argumentation ein.. ich
> dachte daran, vielleicht die ganze Gleichung mit r zu
> multiplizieren: [mm]r*(x^2-rx+s)=0[/mm] und zu folgern, dass wenn r
> ein Nullteiler wäre, es mehr als 2 Lösungen gäbe. (?)
>
> "=>" [mm]x^2-rx+s=0[/mm] habe höchstens 2 Lösungen.
>
> Hier fällt mir auch bestenfalls obige Argumentation ein,
> wobei ich nicht beurteilen kann wie sinnvoll diese ist:
> [mm]x^2-rx+s=0[/mm] habe höchstens 2 Lösungen, dann hat
> [mm]r(x^2-rx+s)=0[/mm] ebenfalls höchstens 2 Lösungen. Damit kann
> r aber kein Nullteiler sein, da es sonst mehrere Lösungen
> gäbe, also ist (da r beliebig) R Nullteilerfrei, also ein
> Integritätsring.
> Jetzt hat aber ein Integritätsring ein Einselement.. kann
> ich das daraus folgern, dass R mindestens fünf Elemente
> besitzt??
Die Argumentation leuchtet mir nicht so richtig ein.
>
> Danke fürs drüber schauen schonmal!! :]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:51 Mi 21.12.2011 | Autor: | chesn |
Hallo! Ich denke jetzt habe ich es richtig verstanden..
Vielen Dank also nochmal! :)
|
|
|
|