OLS Modellgleichung < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:18 Do 17.12.2015 | Autor: | UserK |
Guten Abend
Im Kapitel zur linearen Regression in meinem Statistikbuch wird damit begonnen, dass das Regressionsmodell beschrieben wird:
Y = [mm] X\beta [/mm] + [mm] \epsilon.
[/mm]
Es wird darauf hingewiesen, dass diese Bedingung ohne weitere Annahmen bedeutungslos ist, da sie von einer Vielzahl von [mm] \beta [/mm] und [mm] \epsilon [/mm] erfüllt wird. Im folgenden werden die Gauss-Markov-Annahmen widergegeben und beschrieben.
Dieser didaktische Ansatz war wirkungsvoll und ich denke, ich habe die zentrale Idee hinter der Modellgeleichung verstanden: Die Annahme ist, dass der Datengenerierungsprozess, der durch X und Y beschrieben wird, Daten liefert, bei denen X-Werte und Y-Werte "so in etwa linear" zusammenhängen.
Eine Frage ist nun doch noch unbeantwortet geblieben:
Welche Annahmen sind denn nun notwendig, damit [mm] \beta [/mm] und [mm] \epsilon [/mm] wohldefiniert sind? (Ich weiss, dass sie nicht beobachtbar sind, aber wenn sie nicht eindeutig sind, macht es auch wenig Sinn, sie zu schätzen.)
Ich bin momentan daran, eine "Schablone" zu erarbeiten, wie ich in einer Arbeit richtig mittels OLS argumentieren kann (Abgabetermin erst Ende Februar).
Die Frage ist nur wichtig für mein eigenes Verständnis: Ich bin mir ziemlich sicher, dass, wenn ich obige Gleichung zusammen mit allen Gauss-Markov-Annahmen postuliere, bestimmt alles wohldefiniert sein wird. Meine Argumentation ist (wäre) unmathematisch: das wird so häufig gemacht, dass es doch bestimmt schon lange bekannt geworden wäre, wenn dies nicht erlaubt ist.
Ich würde mich über eine Erklärung sehr freuen (auch über einen Buchtitel oder einen Link zu einem Skript).
Vielen Dank
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:54 Do 17.12.2015 | Autor: | luis52 |
>
> Eine Frage ist nun doch noch unbeantwortet geblieben:
>
> Welche Annahmen sind denn nun notwendig, damit [mm]\beta[/mm] und
> [mm]\epsilon[/mm] wohldefiniert sind? (Ich weiss, dass sie nicht
> beobachtbar sind, aber wenn sie nicht eindeutig sind, macht
> es auch wenig Sinn, sie zu schätzen.)
>
Moin, nicht beobachtbar ist nicht dasselbe wie nicht eindeutig.
Man nimmt an, dass [mm] $\beta$ [/mm] und [mm] $\epsilon$ [/mm] gleichsam "im Hintergrund" wirken, wobei [mm] $\beta$ [/mm] ein fest gegebener Vektor und [mm] $\epsilon$ [/mm] ein Zufallsvektor ist. Beide hinterlassen ihre Spuren in den Werten [mm] $Y_1,\dots,Y_n$, [/mm] die man dann nutzt, um bspw. auf [mm] $\beta$ [/mm] zu schliessen.
|
|
|
|