Obere Integralgrenze < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:27 So 03.12.2006 | Autor: | Kristien |
Hallo, habe folfende Frage Aufgabe: Jedes Integral über f mit variabler oberer Grenze ist eine Stammfunktion von f. Da fragt man sich:
-Kann man umgekehrt jede Stammfunktion von f als Integral über mit variabler oberer Grenze schreiben?
und
-Wenn man eine Stammfunktion von f als ein solches Integral darstellen kann, ist diese Darstellung dann eindeutig, d.h. ist die untere Grenze des Integrals dann eindeutig festgelegt?
Die Antwort auf beide Fragen lautet NEIN!
Wir vollziehen das an einem konkreten Beispiel nach:
a) Zeigen sie, dass es Stammfunktionen der Funktion f(x)= $ [mm] 0,25x^3 [/mm] $ gibt, die sich nicht als Integral
$ [mm] \integral_{a}^{x}0,25x^3\,dx [/mm] $
schreiben lassen.
b) Finden sie diejenige Stammfunktion g(x) von $ [mm] f(x)=0,25x^3, [/mm] $ die bei x=1 eine Nullstelle hat.
Zeigen Sie. dass dieses g(x) zwei Integraldarstellungen
$ [mm] g(x)=\integral_{a}^{x}0,25x^3\,dx=\integral_{b}^{x}0,25x^3\,dx [/mm] $
mit verschiedenen unteren Grenzen a und b besitzt.
Bei a, dachte ich mir könnte ja eventuell gemeint sein, dass eine konstante k angehängt werden könnte und es so nicht als eine beliebige stammfunktion geschrienben werden soll! Wie ich das genau zeigen soll, weiß ich nicht.
bei b habe ich mit gedacht, könnte ich die Nullstelle herausbekommen, indem ich die stammfunktion von $ [mm] 0,25x^3 [/mm] $ bilde, also $ [mm] F8x)=\bruch{1}{16}x^4 [/mm] $ und da dann 1 einsetze. das ergibt: $ [mm] \bruch{1}{16} [/mm] $ das setze ich dann gleich 0 und erhalte als k= $ [mm] \bruch{1}{16}? [/mm] $
Könntest du mir sagen wie a und b funktionieren? Danke
|
|
|
|
Hallo Kristien,
Wir sind doch gerade dabei, deine Fragen zu beantworten! hier
Durch dieses Doppelposting beschleunigst du die Beantwortung keineswegs - eher im Gegenteil.
Gruß informix
|
|
|
|