Obere, untere Dreiecksmatrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei f: V -> V ein Endomorphismus. Man zeige, dass es genau dann eine Basis B von V gibt, so dass M(f,B) obere Dreiecksmatrix ist, wenn es eine Basis B´ von V gibt, so dass M(f,B´) untere Dreicksgestalt besitzt. |
Ich weiß zwar, dass ich diese obere Dreiecksgestalt bekomme, wenn ich die Basen in ihrer Reihenfolge vertausche, aber als ich dass versucht hatte, habe ich das nicht hinbekommen. Kann mir da vielleicht jemand helfen, das Ganze allgemein zu formulieren?
PS: Die Basen entstehen durch Bestimmung verallgemeinerten Eigenräume der entsprechenden Eigenwerte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Idee: Wenn man als Basis die üblichen kanonischen Einheitsvektoren nimmt und diese nun vertauscht (sozusagen rückwärts), müsste die Abbildung auch mit einer "getauschten Matrix" ablaufen.
Die Abbildung ist eindeutig definiert, wenn man sie für die Basisvektoren definiert.
Konkret für den [mm] \IR^4:
[/mm]
Sei f durch eine obere Dreiecksmatrix darstellbar, also durch [mm] F=\pmat{ a & b & c & d \\ 0 & e & f & g \\0 & 0 & h & i \\0 & 0 & 0 & j }. [/mm] Dann gibt das Produkt mit der kanonischen Basis jeweils
[mm] \pmat{ a & b & c & d \\ 0 & e & f & g \\0 & 0 & h & i \\0 & 0 & 0 & j }\vektor{1 \\ 0 \\ 0 \\ 0}=\vektor{a \\ 0 \\ 0 \\ 0}
[/mm]
[mm] \pmat{ a & b & c & d \\ 0 & e & f & g \\0 & 0 & h & i \\0 & 0 & 0 & j }\vektor{0 \\ 1 \\ 0 \\ 0}=\vektor{b \\ e \\ 0 \\ 0}
[/mm]
[mm] \pmat{ a & b & c & d \\ 0 & e & f & g \\0 & 0 & h & i \\0 & 0 & 0 & j }\vektor{0 \\ 0 \\ 1 \\ 0}=\vektor{c \\ f \\ h \\ 0}
[/mm]
[mm] \pmat{ a & b & c & d \\ 0 & e & f & g \\0 & 0 & h & i \\0 & 0 & 0 & j }\vektor{0 \\ 0 \\ 0 \\ 1}=\vektor{d \\ g \\ i \\ j}
[/mm]
Nun gilt Folgendes: Die Matrix [mm] A=\pmat{ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\0 & 1 & 0 & 0 \\1 & 0 & 0 & 0 } [/mm] angewandt auf einen beliebigen Vektor, stellt diesen gerade auf den Kopf.
Klar, dass A*A=E (Einheitsmatrix) ist, A ist zu sich selbst invers (kann man auch direkt nachrechnen). Nun gilt folgende Überlegung:
Ist F*x=y (x,y=Spaltenvektoren), so ist F*A*A*x=y (da A*A=E)
und A*F*A*A*x=A*Y, umgegeklammert: (A*F*A)(A*x)=A*y.
Dies bedeutet: Wenn F x auf y abbildet, bildet A*F*A den Vektor A*x auf den Vektor A*y ab. Dabei bildet A*F*A nun eine untere Dreiecksmatrix (rechne das aus, es kommt
[mm] \pmat{ j & 0 & 0 & 0 \\ i & h & 0 & 0 \\g & f & e & 0 \\d & c & b & a }
[/mm]
heraus), und A*x sowie A*y sind - bis auf einen Basiswechsel - identisch mit x und y:
[mm] \pmat{ j & 0 & 0 & 0 \\ i & h & 0 & 0 \\g & f & e & 0 \\d & c & b & a }\vektor{0 \\ 0 \\ 0 \\ 1}=\vektor{0 \\ 0 \\ 0 \\ a}
[/mm]
[mm] \pmat{ j & 0 & 0 & 0 \\ i & h & 0 & 0 \\g & f & e & 0 \\d & c & b & a }\vektor{0 \\ 0 \\ 1 \\ 0}=\vektor{0 \\ 0 \\ e \\ b}
[/mm]
[mm] \pmat{ j & 0 & 0 & 0 \\ i & h & 0 & 0 \\g & f & e & 0 \\d & c & b & a }\vektor{0 \\ 1 \\ 0 \\ 0}=\vektor{0 \\ h \\ f \\ c}
[/mm]
[mm] \pmat{ j & 0 & 0 & 0 \\ i & h & 0 & 0 \\g & f & e & 0 \\d & c & b & a }\vektor{1 \\ 0 \\ 0 \\ 0}=\vektor{j \\ i \\ g \\ d}
[/mm]
Das entspricht genau der Abbildung F mit gestürzten Spaltenvektoren.
So, und nun ist es an dir, das alles für den [mm] \IR^n [/mm] zu beweisen...
Viel Spaß
|
|
|
|