Oberfläche eines Hyperboloids? < Analysis < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo Leute,
es geht um die Berechnung der Oberfläche eines Hyperboloids mit der Vorgabe [mm] x^{2} + y^{2} < 1 [/mm] und [mm] z = x * y [/mm] ! Ich habe das ganze über die Parametrisierung [mm] (u,v) \right\} \to (u,v,u*v) [/mm] und anschließende Transformation mittels [mm] (r,\varphi) \right\} \to (r * \cos \varphi, r * \sin \varphi) [/mm] gelöst. Probleme hat mir bereitet, die stetige Differenzierbarkeit bei der Umkehrfunktion der Transformationsfunktion zu zeigen(die Trafo-Funktion muss ja ein Diffeomorphismus sein). Außerdem macht mich meine Lösung ein wenig stutzig: [mm] Vol_2 = \bruch{2}{3} * \pi * ( \wurzel{8} - 1) [/mm] !
Könnte das von euch mal jemand überprüfen?
Mit parametrisierten Grüßen
Ralf
|
|
|
|
Hallo,
ich habe das nachgerechnet und das Ergebnis stimmt.
Ich habe die folgende Formel für die Oberfläche benutzt:
[mm]A_{0} \; = \;\int\limits_{0}^{2\pi } {\int\limits_{0}^{1} {\sqrt {r^{2} \; + \;r^{2} \;f_{r}^{2} \; + \;f_\varphi ^{2} } } } \;dr\;d\varphi [/mm]
Für die Berechung der Ableitungen [mm]f_{r}[/mm] und [mm]f_{\varphi}[/mm] verwende folgende Funktion:
[mm]f\left( {r,\;\varphi } \right)\; = \;f\left( {x\left( {r,\;\varphi } \right),\;y\left( {r,\;\varphi } \right)} \right)[/mm]
Leite dann diese Gleichung nach [mm]r[/mm] bzw. [mm]\varphi[/mm] ab.
Gruß
MathePower
|
|
|
|
|
Wunderbar. Dankeschön! Deine Formel hilft mir sicherlich bei der Überprüfung nur rechnen sollte ich das ganze auch mittels Parametrisierung und Transformationssatz können, denn darum dreht sich das Thema bei Lebesgue und Co in AnaIII. Ich werd mal schauen wie du auf die genannte Formel für das Integral kommst. Vielleicht hilft mir das ja auch bei der Klausur schnell eine Lösung zu finden. Im Endeffekt hast du doch nur statt Parametrisierung eine Funktion als Darstellung des Hyperboloids gewählt und dort eine Transformation durchgeführt, richtig???
Gruß Ralf
|
|
|
|