www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Optimierungsproblem Polyedern
Optimierungsproblem Polyedern < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierungsproblem Polyedern: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:00 Do 15.11.2012
Autor: Sam90

Aufgabe
Es seien das Polyeder P = [mm] \{x \in \IR^{3}|Ax \le b, x \ge 0\} [/mm] durch
A [mm] =\pmat{ 6 & 2 & 4 \\ 0 & 3 & 1 }, [/mm] b = [mm] \vektor{12 \\ 15} [/mm]
sowie das lineare Optimierungsproblem LP durch
[mm] max\{c^{T} x | x \in P\} [/mm] für [mm] c^{T} [/mm] = (3,1,1)
gegeben.
(a) Bringen Sie die kanonische Form von LP auf die Normalform.
(b) Bestimmen Sie alle Basen des Gleichungssystems der Normalform.
(c) Welche der Basislösungen sind Ecken von P, welche nicht?
(d) Gibt es entartete Basislösungen?
(e) Berechnen Sie mit Hilfe von (c) alle optimalen Lösungen der Optimierungsaufgabe LP.

Hey ich bräuchte mal ein bisschen Unterstützung bei der Aufgabe.
Mein Lösungsansatz sieht so aus:

(a) max [mm] 3x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] x_{3} [/mm]
unter [mm] 6x_{1} [/mm] + [mm] 2x_{2} [/mm] + [mm] 4x_{3} \le12 [/mm]
[mm] 3x_{2} [/mm] + [mm] x_{3} \le15 [/mm]
[mm] x_{1}, x_{2}, x_{3} \ge0 [/mm]

Bei (b) gehts dann schon los mit meinen Problemen. Ich hab das mal in einen Simplexrechner eingegeben und kann damit nicht viel anfangen... Ich versuche das mal hier so gut wie möglich darzustellen:

[mm] \begin{bmatrix} . & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & . \\ x_{4} & 6 & 2 & 4 & 1 & . & 12 \\ x_{5} & 0 & 3 & 1 & . & 1 & 15 \\ F & -3 & -1 & -1 & 0 & 0 & . \end{bmatrix} [/mm]

[mm] \begin{bmatrix} . & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & . \\ x_{1} & 1 & \bruch{1}{3} & \bruch{2}{3} & \bruch{1}{6} & 0 & 2 \\ x_{5} & 0 & 3 & 1 & 0 & 1 & 15 \\ F & 0 & 0 & 1 & 0,5 & 0 & 6 \end{bmatrix} [/mm]

optimale Lösung: [mm] x_{1}=2 [/mm]
Zielfunktionswert: 6
(Die Punkte sind leere Stellen)

Irgendwie weiß ich nicht, ob das richtig ist und außerdem bringt mich das auch nicht weiter. Wie löse ich denn solche Aufgaben? Hilfe wäre super.

LG Olli

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Optimierungsproblem Polyedern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Sa 17.11.2012
Autor: Sam90

Hallo? :(

Bezug
        
Bezug
Optimierungsproblem Polyedern: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 17.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]