Ordinalzahl ω2 < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 14:23 So 05.01.2014 | Autor: | Vidane |
Aufgabe | "Man prüft nun leicht nach, dass ω2 eine Ordinalzahl ist. Das hängt natürlich von der Definition der Ordnung in ω2 ab; die naheliegende Definition dieser Ordnung und der Beweis seien dem Leser als Übungsaufgabe überlassen." (P.Halmos, Naive Mengenlehre) |
Hey Leute,
Ich hätte noch eine weitere Frage zu dem Thema Ordinalzahlen und wieder aus dem Buch "Naive Mengenlehre" von Halmos.
Auch bei diesem Beweis bräuchte ich eure Hilfe.
Wieder eine Klärung der Begrifflichkeiten:
- Der Nachfolger x+1 einer Menge x wird als $ x [mm] \cup \left\{ x\right\} [/mm] $ definiert.
- $ [mm] \omega [/mm] $ ist die kleinste Menge, die 0 enthält und mit einer Menge x auch stets deren Nachfolger x+1.
- 0, 1, 2, ..., [mm] \omega, \omega+1, \omega+2, [/mm] ..., [mm] \omega2, \omega2+1, [/mm] .. usw
- $ [mm] \omega2=\omega \cup [/mm] ran(f) $, wobei ran(f) der Wertebereich einer Funktion f ist, deren Elemente so aussehen: [mm] f(n)=\omega+n [/mm] (für n in [mm] \omega)
[/mm]
- Also [mm] \omega2 [/mm] besteht aus allen n (mit n in [mm] \omega) [/mm] und allen [mm] \omega+n [/mm] (mit n in [mm] \omega).
[/mm]
- Definition Ordinalzahl: Eine Ordinalzahl wird definiert als wohlgeordnete Menge [mm] \alpha [/mm] mit der Eigenschaft, dass [mm] s(\xi)=\xi [/mm] für alle [mm] \xi [/mm] in [mm] \alpha, [/mm] wobei [mm] s(\xi)=\left\{ \eta\in\alpha : \eta < \xi \right\}
[/mm]
- Wenn [mm] \alpha [/mm] Ordinalzahl, dann auch [mm] \alpha+1.
[/mm]
- [mm] \omega [/mm] ist eine Ordinalzahl.
Nun zu meinem Versuch:
Als Ordnung hatte ich mir überlegt, dass es wohl die Elementbeziehung [mm] \in [/mm] ist.
Wenn [mm] $\xi \in \omega \cup [/mm] ran(f)$, dann ist entweder [mm] \xi \in \omega [/mm] oder [mm] $\xi \in [/mm] ran(f) $.
1. Fall: [mm] \xi \in \omega: [/mm] Da wir bereits hatten, dass [mm] \omega [/mm] Ordinalzahl und Elemente einer Ordinalzahl wieder Ordinalzahlen, gilt sowieso [mm] s(\xi)=\xi
[/mm]
2. Fall: [mm] $\xi \in [/mm] ran(f)$: also [mm] \xi=\omega+n, [/mm] für ein $n [mm] \in \omega$. [/mm] Da wir hatten, dass Nachfolger einer Ordinalzahl wieder Ordinalzahlen sind, gilt auch hier [mm] s(\xi)=\xi
[/mm]
Soweit passt das hoffentlich. Ich bin mir nur nicht sicher, ob ich noch was zur Wohlordnung sagen. Ist die sowieso gegeben?
Ich wäre über jegliche Hilfe sehr dankbar,
Gruß Vidane.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Di 07.01.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|