Ordnung einer Untergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie die Ordnung der Untergruppe U:= [mm] \langle [/mm] ( 1 3 ) , ( 1 3 5 9 ) [mm] \rangle [/mm] der symmetrischen Gruppe [mm] S_{9}.
[/mm]
Hinweis: Sie dürfen verwenden, dass die einzige Untergruppe von [mm] S_{n} [/mm] der Ordnung [mm] \bruch{n!}{2} [/mm] die alternierende Gruppe [mm] A_{n} [/mm] ist. |
Hi Leute,
also ich weiß, dass U:= [mm] \langle [/mm] a [mm] \rangle [/mm] das Erzeugnis von a ist, also U die kleineste Untergruppe (einer Gruppe G) ist, welche a enthält bzw dass [mm] \langle [/mm] a [mm] \rangle [/mm] der Schnitt aller Untergruppen ist, die a enthalten.
Leider habe ich überhaupt keine Ahnung, wie ich nun auf eben diese (kleinste) Untergruppe komme, die ( 1 3 ) und ( 1 3 5 9 ) enthält um dann deren Ordnung zu bestimmen.
Kann mir da jemand einen Tipp geben?
Danke
|
|
|
|
> Bestimmen Sie die Ordnung der Untergruppe U:= [mm]\langle[/mm] ( 1 3
> ) , ( 1 3 5 9 ) [mm]\rangle[/mm] der symmetrischen Gruppe [mm]S_{9}.[/mm]
> Hinweis: Sie dürfen verwenden, dass die einzige
> Untergruppe von [mm]S_{n}[/mm] der Ordnung [mm]\bruch{n!}{2}[/mm] die
> alternierende Gruppe [mm]A_{n}[/mm] ist.
> Hi Leute,
>
> also ich weiß, dass U:= [mm]\langle[/mm] a [mm]\rangle[/mm] das Erzeugnis
> von a ist, also U die kleineste Untergruppe (einer Gruppe
> G) ist, welche a enthält bzw dass [mm]\langle[/mm] a [mm]\rangle[/mm] der
> Schnitt aller Untergruppen ist, die a enthalten.
>
> Leider habe ich überhaupt keine Ahnung, wie ich nun auf
> eben diese (kleinste) Untergruppe komme, die ( 1 3 ) und (
> 1 3 5 9 ) enthält um dann deren Ordnung zu bestimmen.
> Kann mir da jemand einen Tipp geben?
Die kleinste Gruppe U ist nun mal die Gruppe, die von (13) und (1359) erzeugt wird. Die Frage ist nun, wie viele Elemente hat U.
[mm] $(13)\in U$,$(13)(13)\in U$,$(1359)\in [/mm] U$, [mm] $(1359)(1359)\in [/mm] U$,...
>
> Danke
|
|
|
|
|
Hi nochmal,
also ich habe jetzt ein paar Elemente ermittelt:
$(1 3)(1 3) = id$
$(1 3 5 9)(1 3 5 9)=(1 5)(3 9)$
$(1 [mm] 3)\circ [/mm] (1 5)(3 9)=(1 5 9 3)$
$(1 5)(3 [mm] 9)\circ [/mm] (1 3)=(1 9 3 5)$
...
Nun, ich kann jetzt vermuten, dass alle möglichen Permutationen mit den Zahlen 1,3,5 und 9 zustande kommen.
Aber stimmt das und was nützt mir das?
Ich scheine immer noch auf dem Schlauch zu stehen. Ich bitte nochmal um einen Tipp
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:51 Fr 11.03.2011 | Autor: | Lippel |
Hallo,
ich würde anders vorgehen. Du sollst ja das Erzeugnis $<(1 3), (1 3 5 9)>$ in der [mm] $S_9$ [/mm] bestimmen. Du siehst ja, das in den Permutationen nur die Ziffern 1, 3, 5, 9 vorkommen. Also werden nur vier Elemente permutiert, wir könne $<(1 3), (1 3 5 9)>$ also als Untergruppe der [mm] $S_4$ [/mm] auffassen, indem wir einfach umbenennen: $1 [mm] \mapsto [/mm] 1, 3 [mm] \mapsto [/mm] 2, 5 [mm] \mapsto [/mm] 3, 9 [mm] \mapsto [/mm] 4$ (an der Struktur ändert sich so ja nichts). Wir betrachten also $<(1 2),(1 2 3 4)>$ in der [mm] $S_4$. [/mm] Du weißt, dass die Ordnung der Untergruppe die Gruppenordnung der [mm] $S_4$ [/mm] teilen muss, und es ist $ord [mm] \: S_4 [/mm] = 4! =24$. Nennen wir unsere Untergruppe U, dann folgt: $ord [mm] \: [/mm] U [mm] \in \{1, 2, 3, 4, 6, 8, 12, 24\}$, [/mm] denn dies sind die Teiler von 24. Andererseits folgt aus dem Satz von Lagrange, dass die Ordnung der Elemente in U $ord [mm] \: [/mm] U$ teilen müssen. Du weißt $ord [mm] \: [/mm] (1 2) = 2, [mm] ord\:(1 [/mm] 2 3 4) = 4$ und $ord [mm] \: [/mm] (1 2)(1 2 3 4) = ord [mm] \: [/mm] (2 3 4) = 3$.
Damit muss $ord [mm] \: [/mm] U$ ein Vielfaches von 3 und 4 sein [mm] $\Rightarrow [/mm] ord [mm] \: [/mm] U [mm] \in \{12, 24\}$.
[/mm]
Nach dem Hinweis ist aber die [mm] $A_4$ [/mm] die einzige Untergruppe der Ordnung 12 in der [mm] $S_4$. [/mm] U kann nicht die [mm] $A_4$ [/mm] sein, da diese nur gerade Permutationen enthält, $(1 [mm] 3)\:$ [/mm] jedoch ungerade ist. Also folgt $U = [mm] S_4 \Rightarrow [/mm] ord [mm] \: [/mm] U = 24$.
LG Lippel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:29 Fr 11.03.2011 | Autor: | wieschoo |
Da kann man auch gleich schließen, dass es ganz [mm]S_4[/mm] sein muss, da die ganze symmetrische Gruppe von einer Transposition (12) und einem n-Zykel (123....n) erzeugt wird.
Oder allgemein: wird [mm]S_n[/mm] von (i k) und [mm](i\;k\;j_3\; j_4\ldots \; j_n)[/mm] erzeugt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:38 Fr 11.03.2011 | Autor: | Lippel |
Stimmt, ich denke aber mein Vorgehen ist elementarer. Man verwendet im Grunde nur den Satz von Lagrange. Ich dachte mir, dass dieses Vorgehen vom Aufgabensteller vorgesehen sein könnte, da der Lösungshinweis verwendet wird. Naja, auf jeden Fall führen alle genannten Vorschläge zum Ziel.
LG Lippel
|
|
|
|
|
Hi,
vielen Dank an wieschoo und Lippel.
Eure Beiträge haben mir viel geholfen und ich verstehe die Aufgabe jetzt.
|
|
|
|