www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Formale Sprachen" - Ordnungsrelation
Ordnungsrelation < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungsrelation: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 13:30 Fr 30.12.2011
Autor: WhiteKalia

Aufgabe
Sei $G = (N, T, P, S)$ eine kontextfreie Grammatik. Auf $N$ ist die Relation [mm] \sim [/mm] definiert vermöge
$X [mm] \sim [/mm] Y [mm] :\gdw [/mm] X [mm] \xrightarrow\* [/mm] Y [mm] \wedge [/mm] Y [mm] \xrightarrow\* [/mm] X$.

sowie auf [mm] $N/\sim$ [/mm] die Relation [mm] \rightsquigarrow [/mm] vermöge
$A [mm] \rightsquigarrow [/mm]  B [mm] :\gdw \exists [/mm] X [mm] \in [/mm] A, [mm] \exists [/mm] Y [mm] \in [/mm] B$ mit $(X,Y) [mm] \in [/mm] P$.

Zeigen Sie, dass [mm] \sim [/mm] eine Äquivalenzrelation und [mm] \rightsquigarrow\* [/mm] eine Ordnungsrelation ist. [mm] (\rightsquigarrow\* [/mm] ist die reflexiv transitive Hülle von [mm] \rightsquigarrow [/mm] .)

Hallo,

also den ersten Teil mit der Äquivalenzrelation habe ich bereits aber wie muss ich jetzt bei der Ordnungsrelation vorgehen. Eine Ordnungsrelation ist ja eine spezielle Relation.
Wie müsste ich da jetzt schrittweise vorgehen?

Danke!

lg Kalia

        
Bezug
Ordnungsrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Fr 30.12.2011
Autor: schachuzipus

Hallo!

Bitte keine Doppelposts fabrizieren.

Du hast eine identische Frage bereits gestellt.

Frage dort weiter nach oder hole sie mit einer Mitteilung "nach oben"

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]