Palindrom < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:39 Di 30.12.2008 | Autor: | kilchi |
Aufgabe | Aus den 13 Buchstaben des Wortes RELIEFPFEILER sind durch das Umstellen der Reihenfolge neue Wörter zu bilden (die keinen Sinn machen müssen).
a) Wie viele solcher Wörter gibt es?
b) Wie viele dieser Wörter sind Palindrome(Wörter die von links und von rechts gelesen werden können)? |
Wer kann mir beid dieser Aufgabe helfen.
Ich habe zwar einige Formeln aus der Formelsammlung, kann aber nichts damit anfangen.
a) Da man die Buchstaben auf die 13 "Plätze" verteilen möchte wie man will, gibt es wohl 13! Möglichkeiten. da aber die Buchstaben verschieden oft vorkommen muss man noch durch diese dividieren. also jeweils durch 2! (R,L,I,F) und durch 4! (E).
=> [mm] \bruch{13!}{2!*2!*2!*2!*4!} [/mm] = 16216200
Stimmt das Resultat und gibt es eine Formel für das?
b) Wie komme ich hier auf die Lösung?
Muss ich das Wort nur in der einen Hälfte anschauen? Also, nur RELIEF.
Kann es sein, dass es hier 6! Möglichkeiten gibt und weil E zwei mal vorkommt, müsste man noch 2! dividieren?
Resultat 360????????
Besten Dank für eure Antworten
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:03 Di 30.12.2008 | Autor: | BjoernH |
Hallo,
Aufgabenteil a hast Du korrekt gelöst. Eine alternative Herangehensweise ist die folgende:
Du hast 13 Buchstaben, und 4 mal ein E. Das macht [mm] \vektor{13 \\ 4} [/mm] Möglichkeiten. Bleiben 9 (13 - 4 )Stellen im Palindrom noch unbelegt. Es gibt 2 mal den Buchstaben R, also [mm] \vektor{9 \\ 2} [/mm] Möglichkeiten für diesen Buchstaben. [mm] \vektor{7 \\ 2} [/mm] für I, [mm] \vektor{5 \\ 2} [/mm] für L, [mm] \vektor{3 \\ 2} [/mm] für F. Und ein Platz bleibt für den letzten Buchstaben übrig. Multiplizierst Du alles, erhältst Du 16.216.200 Möglichkeiten.
Auch Deine Idee zum Aufgabenteil b ist völlig korrekt. ;)
Gruß
Björn
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:07 Di 30.12.2008 | Autor: | kilchi |
Welch Wunder!
Besten Dank fürs Nachrechnen und den Tipp...
|
|
|
|