www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstige Transformationen" - Parametrisierung von Kurven
Parametrisierung von Kurven < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung von Kurven: Parametrisierung in Zyl.Koord
Status: (Frage) beantwortet Status 
Datum: 22:45 Di 03.05.2016
Autor: Meins

Aufgabe
Skizzieren Sie den Verlauf der Kurve [mm] \overrightarrow{r}(t)=t*cos(t)*\overrightarrow{e}_x+t*sin(t)*\overrightarrow{e}_y+t*\overrightarrow{e}_z. [/mm] Geben Sie eine Parametrisierung der Kurve in Zylinderkoordinaten an.

Hallo zurzeit versuceh ich die oben genannte Aufgabe zu lösen indem ich für die "Komponenten" [mm] F_x [/mm] und [mm] F_y [/mm] , [mm] F_z [/mm] eine Transformation der Vektorkomponenten der Form:

[mm] F(\overrightarrow{t})=\vektor{F_x \\ F_y\\ F_z}=\vektor{cos(Phi)*F_x+sin(Phi)*F_y \\ -sin(Phi)*F_x+cos(Phi)*F_y\\ F_z} [/mm]

anwende. Leider steht unter dieser Aufgabe direkt die "Lösung" ohne Vorwarnung in Form von:

[mm] (t,t,t)=t*\overrightarrow{e}_x+t*\overrightarrow{e}_y+t*\overrightarrow{e}_z [/mm]

Wie kommt man da bitte rechnerisch hin?
Skizzieren könnte mir helfen aber außer  einer größeren Wertetabelle oder eine Zeichnung mit Hilfe von Wolframalpha.com fällt mir dazu auch nichts ein.

Würde mich über eine  Tip zum einem möglichen Lösungsweg, Link zu einer Website oder in welchem Buch man das Nachlesen könnte freuen!! :-P

Mit freundlichem Gruß, Moes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parametrisierung von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 07:03 Mi 04.05.2016
Autor: fred97


> Skizzieren Sie den Verlauf der Kurve
> [mm]\overrightarrow{r}(t)=t*cos(t)*\overrightarrow{e}_x+t*sin(t)*\overrightarrow{e}_y+t*\overrightarrow{e}_z.[/mm]
> Geben Sie eine Parametrisierung der Kurve in
> Zylinderkoordinaten an.
>  Hallo zurzeit versuceh ich die oben genannte Aufgabe zu
> lösen indem ich für die "Komponenten" [mm]F_x[/mm] und [mm]F_y[/mm] , [mm]F_z[/mm]
> eine Transformation der Vektorkomponenten der Form:
>  
> [mm]F(\overrightarrow{t})=\vektor{F_x \\ F_y\\ F_z}=\vektor{cos(Phi)*F_x+sin(Phi)*F_y \\ -sin(Phi)*F_x+cos(Phi)*F_y\\ F_z}[/mm]
>  
> anwende.

Hä ? Was machst Du da ? Was ist F ?




> Leider steht unter dieser Aufgabe direkt die
> "Lösung" ohne Vorwarnung in Form von:
>  
> [mm](t,t,t)=t*\overrightarrow{e}_x+t*\overrightarrow{e}_y+t*\overrightarrow{e}_z[/mm]


Was ist los ? Das ist doch nicht die Lösung. In obiger Gleichung steht rechts lediglich eine weitere Darstellung des Vektors (t,t,t), nämlich als Linearkombination mit der Standardbasisvektoren des [mm] \IR^3. [/mm]

Ist das evtl. ein Hinweis ?


>  
> Wie kommt man da bitte rechnerisch hin?
>  Skizzieren könnte mir helfen aber außer  einer
> größeren Wertetabelle oder eine Zeichnung mit Hilfe von
> Wolframalpha.com fällt mir dazu auch nichts ein.


Google mal nach "konische Spirale".

FRED

>  
> Würde mich über eine  Tip zum einem möglichen
> Lösungsweg, Link zu einer Website oder in welchem Buch man
> das Nachlesen könnte freuen!! :-P
>  
> Mit freundlichem Gruß, Moes
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]