Partialbruchzerlegung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:58 So 05.11.2006 | Autor: | Trivial |
Aufgabe | Löse mit Partialbruchzerlegung: k(x)= 4x²-3x-4 / x³+x²-2x |
Hallo,
wir sollen die Oben genannte Aufgabe per Partialbruchzerlegung lösen. So ich konnte nur soweit kommen: 4x²-3x-4 / x(x²+x-2) = A / x + B /(x²+x-2) = A(x²+x-2)+Bx / x(x²+x-2) = Ax²+ax-2A+Bx / x(x²+x-2) = (A+B)x+Ax²-2A / x(x²+x-2)
Ab hier weiss ich nicht mehr weiter (ich weiss leider nicht mal ob das richtig ist was ist da hingebastelt habe).
Vielen Danke für die hilfe
Ps: könnte sich vielleicht einer gleich diese aufgabe gleichmit angucken:
m(x)= 2x³+2x²-x+1 / x²+x = 2x³+2x²-x+1 / x(x+1) = A / x + B / (x+1) = (A+B)x+A / x(x+1)
Ab hier weiss ich auch nicht weiter. Würde mich um eure hilfe sehr freuen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Trivial,
> Löse mit Partialbruchzerlegung: k(x)= 4x²-3x-4 / x³+x²-2x
> Hallo,
> wir sollen die oben genannte Aufgabe per
> Partialbruchzerlegung lösen. So ich konnte nur soweit
> kommen: 4x²-3x-4 / x(x²+x-2) = A / x + B /(x²+x-2) =
> A(x²+x-2)+Bx / x(x²+x-2) = Ax²+ax-2A+Bx / x(x²+x-2) =
> (A+B)x+Ax²-2A / x(x²+x-2)
> Ab hier weiss ich nicht mehr weiter (ich weiss leider nicht
> mal ob das richtig ist was ist da hingebastelt habe).
> Vielen Danke für die Hilfe
Du meinst: [mm] k(x)=\frac{4x²-3x-4}{x³+x²-2x}
[/mm]
Bitte benutze unseren Formeleditor, damit man die Brüche besser lesen kann.
[mm] $\frac{4x²-3x-4}{x(x²+x-2)} [/mm] = [mm] \frac{A}{ x} [/mm] + [mm] \frac{B}{x²+x-2}=\fradc{A(x²+x-2)+Bx}{x(x²+x-2)} [/mm] = [mm] \frac{Ax²+ax-2A+Bx}{x(x²+x-2)} [/mm] = [mm] \frac{(A+B)x+Ax²-2A}{x(x²+x-2)}$
[/mm]
und jetzt machst du einen Koeffizientenvergleich...
nachdem du vorher mit dem gemeinsamen Nenner durchmultipliziert hast.
Gruß informix
|
|
|
|