www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Partialbruchzerlegung
Partialbruchzerlegung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 So 03.05.2009
Autor: Wieselwiesel

Aufgabe
[mm] \bruch{4x^{4}+3x^{2}-x+2}{(x-1)(x+1)^{2}(x^{2}+1)} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich habe ein kleines Problem mit oben angeführter Partialbruchzerlegung. Ich hab jetzt mal faktorisiert:

[mm] \bruch{A}{(x-1)} [/mm] + [mm] \bruch{Bx+C}{x^{2}+2x+1} [/mm] + [mm] \bruch{Dx+E}{(x^{2}+1)} [/mm]

das ist zwar nicht das was der TI sagt aber es müsste doch auch so funktionieren. dann hab ich mir durch Koeffizientenvergleich
A=-2
[mm] B=\bruch{5}{3} [/mm]
C=-6
[mm] D=\bruch{5}{3} [/mm]
E=2
berechnet.

Und das Ergebnis lautet:

[mm] \bruch{-2}{(x-1)} [/mm] + [mm] \bruch{\bruch{5}{3}x-6}{x^{2}+2x+1} [/mm] + [mm] \bruch{\bruch{5}{3}x+2}{(x^{2}+1)} [/mm]

Mein Problem ist, dass es natürlich nicht mit dem ergebnis vom TI übereinstimmt. Meine Fragen: Kann man das "faktorisieren" so machen wie ich, oder soll ich mich da doch eher an den TI halten, der in dem Fall eine ziemilch anstrengende Faktorisierung ausgespuckt hat (A-H)?  Wenn meine Version geht, wo hab ich mich verrechnet?
Ich wär sehr dankbar für Hilfe!!

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 Mo 04.05.2009
Autor: reverend

Hallo Wieselwiesel, [willkommenmr]

Ich habs nicht nachgerechnet, aber Dein Ansatz ist unvollständig:

> [mm]\bruch{4x^{4}+3x^{2}-x+2}{(x-1)(x+1)^{2}(x^{2}+1)}[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo!
>  
> Ich habe ein kleines Problem mit oben angeführter
> Partialbruchzerlegung. Ich hab jetzt mal faktorisiert:
>  
> [mm]\bruch{A}{(x-1)}[/mm] + [mm]\bruch{Bx+C}{x^{2}+2x+1}[/mm] +
> [mm]\bruch{Dx+E}{(x^{2}+1)}[/mm]

Richtiger Ansatz (editiert) ist:

[mm] \bruch{4x^{4}+3x^{2}-x+2}{(x-1)(x+1)^{2}(x^{2}+1)}=\bruch{A}{(x-1)}+\red{\bruch{B}{(x+1)}+\bruch{C}{(x+1)^2}}+\bruch{Dx+E}{(x^{2}+1)} [/mm]

Natürlich würde man normalerweise die Variablen fortlaufend benennen, aber das F im roten Term soll nur dazu helfen, dass Du den größten Teil Deiner Rechnung beibehalten kannst. Sollte F Null sein, hätte der Rest Deiner Berechnung weiterhin Bestand, aber auch nur dann. Andernfalls dürfte auch eine Probe nicht stimmen; versuchs mal.

edit: Schön, dass schachuzipus noch wach war. Ich offenbar nicht mehr. Pardon.

Grüße
reverend

Bezug
                
Bezug
Partialbruchzerlegung: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 01:01 Mo 04.05.2009
Autor: schachuzipus

Hallo reverend,


> Richtiger Ansatz ist:
>  
> [mm]\bruch{4x^{4}+3x^{2}-x+2}{(x-1)(x+1)^{2}(x^{2}+1)}=\bruch{A}{(x-1)}+\red{\bruch{F}{(x+1)}}+\bruch{Bx+C}{(x+1)^2}+\bruch{Dx+E}{(x^{2}+1)}[/mm]

Das stimmt nicht, der Ansatz für eine $k$-fache reelle NST des Nenners [mm] $\frac{a}{(x-x_0)^k}$ [/mm] ist [mm] $\frac{A_1}{x-x_0}+\frac{A_2}{(x-x_0)^2}+...+\frac{A_k}{(x-x_0)^k}$ [/mm]

Hier also [mm] $\bruch{4x^{4}+3x^{2}-x+2}{(x-1)(x+1)^{2}(x^{2}+1)}=\bruch{A}{(x-1)}+\red{\bruch{F}{(x+1)}}+\blue{\bruch{B}{(x+1)^2}}+\bruch{Dx+E}{(x^{2}+1)}$ [/mm]

>  
> Natürlich würde man normalerweise die Variablen fortlaufend
> benennen, aber das F im roten Term soll nur dazu helfen,
> dass Du den größten Teil Deiner Rechnung beibehalten
> kannst. Sollte F Null sein, hätte der Rest Deiner
> Berechnung weiterhin Bestand, aber auch nur dann.
> Andernfalls dürfte auch eine Probe nicht stimmen; versuchs
> mal.
>  
> Grüße
>  reverend

LG

schachuzipus

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Mo 04.05.2009
Autor: Wieselwiesel

Danke für die Antwort!
Ich hab immer gedacht, sobald ein quadrat im nenner steht, muss man im Zähler Ax+B schreiben. weil wenn man [mm] (x+1)^{2} [/mm] auflöst, kommt ja [mm] x^{2}+2x+1 [/mm] raus. Und Faktorisieren ist nicht wirklich meine stärke. Aber danke für die auflösung.
Jetzt hab ich gleich mal neu gerechnet, aber ich bekomm dann:

A = [mm] -\bruch{1}{8} [/mm]
B = [mm] \bruch{13}{8} [/mm]
C = [mm] \bruch{26}{8} [/mm]
D = [mm] -\bruch{3}{2} [/mm]
E = [mm] -\bruch{1}{2} [/mm]

und dann:

[mm] \bruch{-\bruch{1}{8}}{x-1}+\bruch{\bruch{13}{8}}{x+1}+\bruch{\bruch{26}{8}}{(x+1)^{2}}+\bruch{-\bruch{3}{2}x-\bruch{1}{2}}{x^{2}+1} [/mm]

Das stimmt ja auch nicht. Ich glaub ich hab mich beim Gleichungssystem auflösen verrechnet (das ist auch nicht so meine stärke). Gibts da vielleicht einen Trick, wie ich sowas schnell und richtig löse? Kann man das mit Gauß machen?

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mo 04.05.2009
Autor: Steffi21

Hallo, so ist es, deine Ergebnisse sind nicht korrekt, gehe über den Hauptnenner, mache dann Koeffizientenvergleich, du solltest a=1; b=2, c=-2,5; d=1 und e=-0,5 bekommen, der Gauß-Algorithmus bietet sich für jedes Gleichungssystem an, wenn du mehr als zwei Variablen hast, []hier kannst du deine Ergebnisse kontrollieren, stelle doch mal bitte dein Gleichungssystem vor, eventuell steckt ja dort schon ein Fehler drin, Steffi

Bezug
                                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Mo 04.05.2009
Autor: Wieselwiesel

also so sieht mein Gleichungssystem aus:
[mm] x^{5}: [/mm] A+B+D = 0
[mm] x^{4}: [/mm] 3A +B+C+2D+E = 4
[mm] x^{3}: [/mm] 4A-D+2E = 0
[mm] x^{2}: [/mm] 4A+2C-2D = 3
[mm] x^{1}: [/mm] 3A-B-2E = -1
[mm] x^{0}: [/mm] A-B+C-E = 2

Stimmt das soweit?

Bezug
                                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Mo 04.05.2009
Autor: Steffi21

Hallo

[mm] \bruch{4x^{4}+3x^{2}-x+2}{(x-1)(x+1)^{2}(x^{2}+1)}=\bruch{A}{x-1}+\bruch{B}{x+1}+\bruch{C}{(x+1)^{2}}+\bruch{Dx+E}{x^{2}+1} [/mm]

rechts vom Gleichheitszeichen stehen also 4 Brüche

1. Bruch: Erweitern mit [mm] (x+1)^{2}(x^{2}+1) [/mm] ergibt im Zähler

[mm] A(x^{4}+2x^{3}+2x^{2}+2x+1) [/mm]

2. Bruch: Erweitern mit [mm] (x-1)(x+1)(x^{2}+1) [/mm] ergibt im Zähler

[mm] B(x^{4}-1) [/mm]

3. Bruch: Erweitern mit [mm] (x-1)(x^{2}+1) [/mm] ergibt im Zähler

[mm] C(x^{3}-x^{2}+x-1) [/mm]

4. Bruch: Erweitern mit [mm] (x-1)(x+1)^{2} [/mm] ergibt im Zähler

[mm] Dx^{4}+Dx^{3}+Ex^{3}-Dx^{2}+Ex^{2}-Dx-Ex-E [/mm]

jetzt über den Koeffizientenvergleich erneut das Gleichungssystem aufstellen, woher hast du eigentlich die Gleichung für [mm] x^{5} [/mm] gezaubert?

Steffi





Bezug
                                                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Mo 04.05.2009
Autor: Wieselwiesel

Oh! jetzt ist es mir klar! ich hab nämlich einfach den ersten bruch auch mit x+1, den zweiten mit [mm] (x+1)^{2} [/mm] und den 3. bruch mit x+1 erweitert, (daher das [mm] x^{5}) [/mm] dabei is das ja durch die faktorisierung nicht nötig weil x+1 ja in [mm] (x+1)^{2} [/mm] enthalten ist.
Vielen vielen dank für die hilfe und die Geduld mit mir!

Bezug
                                                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mo 04.05.2009
Autor: reverend

Zur Kontrolle:

[mm] (x^4) [/mm]  A+B+D=4
[mm] (x^3) [/mm] 2A+C+D+E=0
[mm] (x^2) [/mm] 2A-C-D+E=3
(x) 2A+C-D-E=-1
(1) A-B-C-E=2

...und die Ergebnisse hast Du ja schon.

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]