www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitung
Partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:06 Mi 24.04.2013
Autor: Mopsi

Aufgabe
Ermittle die partiellen Ableitungen erster Ordnung von

1.
[mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]

2.
[mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]



Schönen guten Abend :)

Zu 1:

Hier muss ich die Produktregel anwenden.

[mm] \frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]

Ist das soweit richtig, ich habe bist jetzt nur die PR angewendet?
Aber ich sehe nicht genau was man da nun kürzen kann bzw. wie ich weitermachen soll?

Mopsi

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Mi 24.04.2013
Autor: Adamantin


> Ermittle die partiellen Ableitungen erster Ordnung von
>  
> 1.
>  [mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]
>  
> 2.
>  
> [mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]
>  
>
> Schönen guten Abend :)
>  
> Zu 1:
>  
> Hier muss ich die Produktregel anwenden.
>  
> [mm]\frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]
>  
> Ist das soweit richtig, ich habe bist jetzt nur die PR
> angewendet?
>  Aber ich sehe nicht genau was man da nun kürzen kann bzw.
> wie ich weitermachen soll?

Ahhh bitte bitte bei partiellen Ableitungen kein d sondern ein [mm] $\partial{}$, [/mm] das wärte schonmal gaaanz wichtig ;) Ansonsten ja, da du beim partiellen Ableiten jeweils alle bis auf eine gewünschte Variable konstant hälst, unterscheidet es sich prinzipiell nicht vom "ableiten" im eindimensionalen. Daher ist die Produktregel sicherlich richtig. Du hast allerdings in der Klammer nach dem ln ein Plus vergessen. Ansonsten ist da auch nicht mehr viel mit Zusammenfassen, dies verhindert der ln.

>  
> Mopsi


Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:35 Mi 24.04.2013
Autor: Mopsi


> > Ermittle die partiellen Ableitungen erster Ordnung von
> >
> > 1.
> > [mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]
> >
> > 2.
> >
> >
> [mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]
> >
> >
> > Schönen guten Abend :)
> >
> > Zu 1:
> >
> > Hier muss ich die Produktregel anwenden.
> >
> > [mm]\frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]

>

> >
> > Ist das soweit richtig, ich habe bist jetzt nur die PR
> > angewendet?
> > Aber ich sehe nicht genau was man da nun kürzen kann
> bzw.
> > wie ich weitermachen soll?

>

> Ahhh bitte bitte bei partiellen Ableitungen kein d sondern
> ein [mm]\partial{}[/mm], das wärte schonmal gaaanz wichtig ;)

Okay, merke ich mir :)

> Du hast allerdings in der Klammer nach dem ln ein
> Plus vergessen.

Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

> Ansonsten ist da auch nicht mehr viel mit
> Zusammenfassen, dies verhindert der ln.

>
Super :)

[mm] \frac{\partial{f}}{\partial{y}} = (3y^2x+2x^2)ln(x^2+y^2+xy) + (xy^3+2x^2y)( \frac{2y+x}{x^2+y^2+xy})[/mm]

Ist das richtig?

​Mopsi
 

Bezug
                        
Bezug
Partielle Ableitung: das fehlende Plus
Status: (Antwort) fertig Status 
Datum: 01:12 Mi 24.04.2013
Autor: Loddar

Hallo Mopsi!


> > Du hast allerdings in der Klammer nach dem ln ein
> > Plus vergessen.
>
> Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

Die letzte Klammer muss lauten [mm] $...+\left(xy^3 \ \red{+} \ 2x^2y\right)*...$ [/mm]



> [mm]\frac{\partial{f}}{\partial{y}} = (3y^2x+2x^2)ln(x^2+y^2+xy) + (xy^3+2x^2y)( \frac{2y+x}{x^2+y^2+xy})[/mm]

>

> Ist das richtig?

[daumenhoch] Das sieht gut aus!


Gruß
Loddar

Bezug
                                
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Mi 24.04.2013
Autor: Mopsi


> Hallo Mopsi!

>
>

> > > Du hast allerdings in der Klammer nach dem ln ein
> > > Plus vergessen.
> >
> > Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

>

> Die letzte Klammer muss lauten [mm]...+\left(xy^3 \ \red{+} \ 2x^2y\right)*...[/mm]

Oh! Jetzt sehe ich es auch :-P
Danke :)
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]