www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Partielle Intergration
Partielle Intergration < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Intergration: Intergration
Status: (Frage) beantwortet Status 
Datum: 11:22 Sa 06.10.2007
Autor: fuchsone

Aufgabe
Bilde die Stammfunktion von

[mm] \integral_{}^{}{cosxe^{x} dx} [/mm]

also wende ich die partielle integration an:

[mm] \integral_{}^{} [/mm] u'v= uv - [mm] \integral_{}^{} [/mm] uv'

angewand also:


[mm] \integral_{}^{}{cosxe^{x} dx} [/mm] = [mm] sinxe^{x} [/mm] - [mm] \integral_{}^{}{sinxe^{x} dx} [/mm]

[mm] \integral_{}^{}{cosxe^{x} dx} [/mm] = [mm] sinxe^{x} [/mm] + [mm] cosxe^{x} [/mm] -
[mm] \integral_{}^{}{cosxe^{x} dx} [/mm]

wie komme ich nun weiter kann mir jemand nochmal erklären was ich jetzt tun muss um die Stammfunktion zu erhalten?


        
Bezug
Partielle Intergration: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Sa 06.10.2007
Autor: Slartibartfast

Hallo fuchsone,

jetzt addierst du das rechte Integral, so dass du 2 davon auf der linken Seite stehen hast und teilst alles durch 2.
Der Trick lässt sich öfters bei sin/cos-Integrationen anwenden.

Gruß
Slartibartfast

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]