Peirce Zerlegung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 00:47 Di 07.03.2006 | Autor: | Vilologe |
Aufgabe | Beweise: Ein nichtnilpotentes Linksideal L eines Ringes R ist in eine direkte Summe L = L' + m zerlegbar, wobei m ein nilpotentes Ideal ist. |
Also der Beweis des Satzes funktioniert irgendwie indem man Elemente x aus R als xe+(x-xe) schreibt, wobei xe aus L' ist, x-xe aus m und e ein Annullator. Diese Zerlegung nennt man Peirce-Zerlegung. Ich hab schon das ganze Net und die Bib der Uni durchforstet und hab keine näheren Info's zu dem Thema gefunden. Weiß irgendjemand, wozu die Zerlegung nützlich ist? Oder hat jemand Beispiele oder irgendwas?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:29 Di 07.03.2006 | Autor: | felixf |
> Beweise: Ein nichtnilpotentes Linksideal L eines Ringes R
> ist in eine direkte Summe L = L' + m zerlegbar, wobei m ein
> nilpotentes Ideal ist.
Mit $m = 0$ geht das immer
Ich denke mal da fehlt noch irgendetwas an Voraussetzungen, denn der Fall $m = 0$ ist natuerlich ziemlich langweilig... (und in manchen Ringen ist $m = 0$ die einzige Moeglichkeit, insofern...)
> Ich hab schon das ganze Net und die Bib der Uni durchforstet
> und hab keine näheren Info's zu dem Thema gefunden. Weiß
> irgendjemand, wozu die Zerlegung nützlich ist? Oder hat
> jemand Beispiele oder irgendwas?
Schon mal 'Peirce decomposition' in google eingegeben? Da hat es ziemlich viele Treffer, und einige sehen vielversprechend aus.
Gehoert hatte ich davon bisher allerdings auch noch nichts...
LG Felix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:32 Mi 08.03.2006 | Autor: | statler |
Guten Morgen!
> Beweise: Ein nichtnilpotentes Linksideal L eines Ringes R
> ist in eine direkte Summe L = L' + m zerlegbar, wobei m ein
> nilpotentes Ideal ist.
> Also der Beweis des Satzes funktioniert irgendwie indem
> man Elemente x aus R als xe+(x-xe) schreibt, wobei xe aus
> L' ist, x-xe aus m und e ein Annullator. Diese Zerlegung
> nennt man Peirce-Zerlegung. Ich hab schon das ganze Net und
> die Bib der Uni durchforstet und hab keine näheren Info's
> zu dem Thema gefunden. Weiß irgendjemand, wozu die
> Zerlegung nützlich ist? Oder hat jemand Beispiele oder
> irgendwas?
Diese Peirce-Zerlegung taucht auf, wenn man halbeinfache Artin-Ringe in ihre einfachen Bestandteile zerlegt, gehört also im weiteren Sinne in die Strukturtheorie der nichtkommutativen Ringe und deswegen heutzutage nicht zum mainstream. In deiner Beh. scheinen daher gewisse Voraussetzungen zu fehlen, wie auch Felix bemekt hat. Wichtigste Beispiele sind die Matrizenringe, e ist dann idempotent.
Literatur dazu gibt es bestimmt reichlich, z. B. I. N. Herstein, Noncommutative Rings
Bei weiteren Fragen kümmere ich mich
Dieter
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:04 Do 16.03.2006 | Autor: | Vilologe |
Habt mir gut weitergeholfen, ich hab`s gerade mal am Beispiel der 2x2-Matrizen durchgerechnet, ist ja eigentlich ganz leicht
Besten Dank !
Vilo
|
|
|
|