Planimetrie - Strahlensatz < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:37 Fr 30.08.2013 | Autor: | lahihoa |
Aufgabe | Gesucht ist in einem gleichseitigen Dreieck mit der Seitenkante a die Teilhöhe h, die das Dreieck mit einem Schnitt parallel zur Grundkante in gleich große Teile teilt. |
Hallo,
ich sitze schon seit Tagen an dieser Aufgabe und komme einfach nicht weiter. Ich hoffe jemand kann mir helfen, danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo und
> Gesucht ist in einem gleichseitigen Dreieck mit der
> Seitenkante a die Teilhöhe h, die das Dreieck mit einem
> Schnitt parallel zur Grundkante in gleich große Teile
> teilt.
Ist das der Originalwortlaut der Aufgabe? Falls nein, dann reiche diesen bitte nach, falls ja: dann gibt es zwar eine naheliegende Interpretation, aber man kann nicht völlig ausschließen, dass die Aufgabe so gemeint ist, wie ich sie bisher verstehe.
> Hallo,
> ich sitze schon seit Tagen an dieser Aufgabe und komme
> einfach nicht weiter. Ich hoffe jemand kann mir helfen,
> danke.
Für die Zukunft sei hier gesagt: so machen wir das normalerweise hier nicht. Wir geben keine fertigen Lösungen, sondern wir erwarten schon, dass vorher eigene Versuche unternommen wurden und, ganz wichtig: dass diese Versuche hier ausführlich vorgestellt werden.
Ich verstehe diese Aufgabe dahingehend, dass die in der folgenden Skizze rot markierte Höhe gesucht ist:
[Dateianhang nicht öffentlich]
Hierzu musst du die beiden Flächen gleichsetzen. Wenn du die rote Höhe mit h bezeichnest und die Dreieckseiten mit a, dann lässt sich die Trapezhöhe leicht mittels h und a ausdrücken, und die kleinere der beiden parallelen Trapezseiten bekommt man mit dem Strahlensatz (was ja auch angedacht ist, legt man den Titel deiner Frage zugrunde).
Das Resultat ist eine quadratische Gleichung in a und h, die sich leicht nach h auflösen lässt und auf ein verblüffend einfaches Resultat führt.
Gruß, Diophant
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:42 Fr 30.08.2013 | Autor: | abakus |
> Hallo und
>
>
>
> > Gesucht ist in einem gleichseitigen Dreieck mit der
> > Seitenkante a die Teilhöhe h, die das Dreieck mit
> einem
> > Schnitt parallel zur Grundkante in gleich große Teile
> > teilt.
>
> Ist das der Originalwortlaut der Aufgabe? Falls nein, dann
> reiche diesen bitte nach, falls ja: dann gibt es zwar eine
> naheliegende Interpretation, aber man kann nicht völlig
> ausschließen, dass die Aufgabe so gemeint ist, wie ich sie
> bisher verstehe.
>
> > Hallo,
> > ich sitze schon seit Tagen an dieser Aufgabe und komme
> > einfach nicht weiter. Ich hoffe jemand kann mir helfen,
> > danke.
>
> Für die Zukunft sei hier gesagt: so machen wir das
> normalerweise hier nicht. Wir geben keine fertigen
> Lösungen, sondern wir erwarten schon, dass vorher eigene
> Versuche unternommen wurden und, ganz wichtig: dass diese
> Versuche hier ausführlich vorgestellt werden.
>
> Ich verstehe diese Aufgabe dahingehend, dass die in der
> folgenden Skizze rot markierte Höhe gesucht ist:
>
> [Dateianhang nicht öffentlich]
>
> Hierzu musst du die beiden Flächen gleichsetzen.
Hallo, das würde ich so absolut nicht sagen. Man KANN es so machen.
Als Ansatz reicht allerdings aus, dass die Fläche des oberen Dreiecks die Hälfte der Fläche des Gesamtdreiecks einnehmen muss.
Weiterhin muss man nur noch wissen, welchen Einfluss das Verhältnis von Seitenlängen ähnlicher Figuren auf das Verhältnis ihrer Flächeninhalte hat.
Gruß Abakus
> Wenn du
> die rote Höhe mit h bezeichnest und die Dreieckseiten mit
> a, dann lässt sich die Trapezhöhe leicht mittels h und a
> ausdrücken, und die kleinere der beiden parallelen
> Trapezseiten bekommt man mit dem Strahlensatz (was ja auch
> angedacht ist, legt man den Titel deiner Frage zugrunde).
>
> Das Resultat ist eine quadratische Gleichung in a und h,
> die sich leicht nach h auflösen lässt und auf ein
> verblüffend einfaches Resultat führt.
>
>
> Gruß, Diophant
>
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:03 Fr 30.08.2013 | Autor: | Diophant |
Hallo abakus,
und: @lahihoa:
> > Hallo und
> >
> >
> >
> > > Gesucht ist in einem gleichseitigen Dreieck mit der
> > > Seitenkante a die Teilhöhe h, die das Dreieck mit
> > einem
> > > Schnitt parallel zur Grundkante in gleich große
> Teile
> > > teilt.
> >
> > Ist das der Originalwortlaut der Aufgabe? Falls nein,
> dann
> > reiche diesen bitte nach, falls ja: dann gibt es zwar
> eine
> > naheliegende Interpretation, aber man kann nicht
> völlig
> > ausschließen, dass die Aufgabe so gemeint ist, wie ich
> sie
> > bisher verstehe.
> >
> > > Hallo,
> > > ich sitze schon seit Tagen an dieser Aufgabe und
> komme
> > > einfach nicht weiter. Ich hoffe jemand kann mir
> helfen,
> > > danke.
> >
> > Für die Zukunft sei hier gesagt: so machen wir das
> > normalerweise hier nicht. Wir geben keine fertigen
> > Lösungen, sondern wir erwarten schon, dass vorher
> eigene
> > Versuche unternommen wurden und, ganz wichtig: dass
> diese
> > Versuche hier ausführlich vorgestellt werden.
> >
> > Ich verstehe diese Aufgabe dahingehend, dass die in der
> > folgenden Skizze rot markierte Höhe gesucht ist:
> >
> > [Dateianhang nicht öffentlich]
> >
> > Hierzu musst du die beiden Flächen gleichsetzen.
> Hallo, das würde ich so absolut nicht sagen. Man KANN es
> so machen.
> Als Ansatz reicht allerdings aus, dass die Fläche des
> oberen Dreiecks die Hälfte der Fläche des Gesamtdreiecks
> einnehmen muss.
> Weiterhin muss man nur noch wissen, welchen Einfluss das
> Verhältnis von Seitenlängen ähnlicher Figuren auf das
> Verhältnis ihrer Flächeninhalte hat.
> Gruß Abakus
Ja, da stimme ich natürlich uneingeschränkt zu und bedanke mich für den Hinweis. Diesen Weg habe ich vorhin übersehen, und er ist gewiss um so vieles einfacher, dass er hier als 'Mittel der Wahl' bezeichnet werden kann. Sprich: genau so sollte man es machen.
Gruß, Diophant
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:34 Sa 31.08.2013 | Autor: | lahihoa |
Danke für die schnelle Antwort. Leider ist die Aufgabe nicht so gemeint. Mit "in gleich große Teile" meint man, dass die beiden Teile flächenmäßig gleich groß sind und es ist nicht die Höhe des kleinen Dreiecks, sondern die des dadurch entstandenen Trapezes gesucht. Ich bin soweit gekommen, dass ich die Höhe des gesamten Dreiecks ausgerechnet habe und nun weiß ich nicht mehr weiter.
|
|
|
|
|
Hallo,
> Danke für die schnelle Antwort. Leider ist die Aufgabe
> nicht so gemeint. Mit "in gleich große Teile" meint man,
> dass die beiden Teile flächenmäßig gleich groß sind und
> es ist nicht die Höhe des kleinen Dreiecks, sondern die
> des dadurch entstandenen Trapezes gesucht. Ich bin soweit
> gekommen, dass ich die Höhe des gesamten Dreiecks
> ausgerechnet habe und nun weiß ich nicht mehr weiter.
Und wo steht die Höhe, die du berechnet hast, ich sehe sie nirgends. Bitte gib deine bereits erzielten Resultate hier an, sonst macht das keinen Sinn.
Dass die beiden Teilflächen gleich groß sein sollen, ist doch unstrittig. Und welche der beiden Höhen jetzt genau gesucht ist, das ist gar nicht so wichtig. Berechne auf einem der beiden gegebenen Wege (der von abakus ist einfacher) die Höhe des kleinen Dreiecks und subtrahiere sie von der Höhe des großen Dreiecks (die du ja offensichtlich kennst).
Gruß, Diophant
|
|
|
|