www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Poisson-Verteilung
Poisson-Verteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Verteilung: Maximum-Likelihood-Schätzer
Status: (Frage) beantwortet Status 
Datum: 11:22 Di 28.10.2014
Autor: GeMir

Aufgabe
Seien [mm] $$X_1, \ldots, X_n \overset{iid}{\sim} Po(\lambda), [/mm] \ [mm] \lambda [/mm] > 0$$ Bestimmen Sie den Maximum-Likelihood-Schätzer für [mm] $\lambda$. [/mm]



Die Likelihood-Funktion ist gegeben durch:
$L(p | [mm] x_1, \ldots, x_n) [/mm] &= [mm] \prod_{i=1}^{n}{\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}$ [/mm]

(gemeinsame Dichte von $n$ stochastisch unabhängigen Zufallsvariablen).

Die Log-Likelihood-Funktion ist somit gegeben durch:

$l(p | [mm] x_1, \ldots, x_n) [/mm] = [mm] \ln\Bigg(\prod_{i=1}^{n}{\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}\Bigg) [/mm] = [mm] \sum_{i=1}^{n}{\ln\Bigg(\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}\Bigg)\\ [/mm]
= [mm] \sum_{i=1}^{n}{\big(\ln(\lambda^{x_i}) - \ln(x_i!) + \ln(e^{-\lambda})\big)}\\ [/mm]
= [mm] \sum_{i=1}^{n}{\big(x_i\cdot\ln(\lambda) - \ln(x_i!) -\lambda\big)}\\ [/mm]
= [mm] \ln(\lambda)\cdot\sum_{i=1}^{n}{x_i} [/mm] - [mm] \sum_{i=1}^{n}{\ln(x_i!)} [/mm] - [mm] \sum_{i=1}^{n}{\lambda}\\ [/mm]
= [mm] \ln(\lambda)\cdot n\cdot\bar{x} [/mm] - [mm] \sum_{i=1}^{n}{\ln(x_i!)} [/mm] - [mm] n\cdot\lambda$ [/mm]

Notwendige Bedingung: [mm] $\frac{\partial l}{\partial p} [/mm] = 0$

[mm] $\frac{\partial l}{\partial \lambda} [/mm] &= [mm] \frac{1}{\lambda}\cdot n\cdot\bar{x} [/mm] - n$

Also:

[mm] $\frac{1}{\lambda}\cdot n\cdot\bar{x} [/mm] - n = 0$

Wegen $n [mm] \neq [/mm] 0$ und [mm] $\lambda [/mm] > 0$:

[mm] $\frac{1}{\lambda}\cdot\bar{x} [/mm] - 1 = [mm] 0\\ [/mm]
[mm] \frac{1}{\lambda}\cdot\bar{x} [/mm] = [mm] 1\\ [/mm]
[mm] \bar{x} [/mm] = [mm] \lambda$ [/mm]

Hinreichende Bedingung: [mm] $\frac{\partial^2 l}{\partial \lambda\partial \lambda} \neq [/mm] 0$

[mm] $\frac{\partial^2 l}{\partial \lambda\partial \lambda} [/mm] = [mm] -\frac{1}{\lambda^2}\cdot n\cdot\bar{x}$ [/mm]

Und an der Stelle komme ich irgendwie nicht weiter, weil der Wert von [mm] $\bar{x}$ [/mm] ja von einer konkreten Realisation der Stichprobe abhängt.

Ups, die Frage hat sich erledigt: der Träger ist ja [mm] \mathbb{N}_0 [/mm] :)

        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Di 28.10.2014
Autor: DieAcht

Hallo GeMir,


> Seien [mm]X_1, \ldots, X_n \overset{iid}{\sim} Po(\lambda), \ \lambda > 0[/mm]
> Bestimmen Sie den Maximum-Likelihood-Schätzer für
> [mm]$\lambda$.[/mm]
>  
>
> Die Likelihood-Funktion ist gegeben durch:
> [mm]L(p | x_1, \ldots, x_n) &= \prod_{i=1}^{n}{\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}[/mm]
>  
> (gemeinsame Dichte von [mm]n[/mm] stochastisch unabhängigen
> Zufallsvariablen).
>  
> Die Log-Likelihood-Funktion ist somit gegeben durch:
>
> $l(p | [mm]x_1, \ldots, x_n)[/mm] =
> [mm]\ln\Bigg(\prod_{i=1}^{n}{\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}\Bigg)[/mm]
> =
> [mm]\sum_{i=1}^{n}{\ln\Bigg(\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}\Bigg)\\[/mm]
>   = [mm]\sum_{i=1}^{n}{\big(\ln(\lambda^{x_i}) - \ln(x_i!) + \ln(e^{-\lambda})\big)}\\[/mm]
>  
> = [mm]\sum_{i=1}^{n}{\big(x_i\cdot\ln(\lambda) - \ln(x_i!) -\lambda\big)}\\[/mm]
>  
> = [mm]\ln(\lambda)\cdot\sum_{i=1}^{n}{x_i}[/mm] -
> [mm]\sum_{i=1}^{n}{\ln(x_i!)}[/mm] - [mm]\sum_{i=1}^{n}{\lambda}\\[/mm]
>   = [mm]\ln(\lambda)\cdot n\cdot\bar{x}[/mm] -
> [mm]\sum_{i=1}^{n}{\ln(x_i!)}[/mm] - [mm]n\cdot\lambda$[/mm]
>  
> Notwendige Bedingung: [mm]\frac{\partial l}{\partial p} = 0[/mm]
>
> [mm]\frac{\partial l}{\partial \lambda} &= \frac{1}{\lambda}\cdot n\cdot\bar{x} - n[/mm]
>  
> Also:
>  
> [mm]\frac{1}{\lambda}\cdot n\cdot\bar{x} - n = 0[/mm]
>  
> Wegen [mm]n \neq 0[/mm] und [mm]\lambda > 0[/mm]:
>  
> [mm]$\frac{1}{\lambda}\cdot\bar{x}[/mm] - 1 = [mm]0\\[/mm]
>  [mm] \frac{1}{\lambda}\cdot\bar{x}[/mm] = [mm]1\\[/mm]
>  [mm] \bar{x}[/mm] = [mm]\lambda$[/mm]
>  
> Hinreichende Bedingung: [mm]\frac{\partial^2 l}{\partial \lambda\partial \lambda} \neq 0[/mm]
>
> [mm]\frac{\partial^2 l}{\partial \lambda\partial \lambda} = -\frac{1}{\lambda^2}\cdot n\cdot\bar{x}[/mm]

[ok]

> Und an der Stelle komme ich irgendwie nicht weiter, weil
> der Wert von [mm]\bar{x}[/mm] ja von einer konkreten Realisation der
> Stichprobe abhängt.
>  
> Ups, die Frage hat sich erledigt: der Träger ist ja
> [mm]\mathbb{N}_0[/mm] :)

Richtig. Wegen [mm] \lambda>0 [/mm] ist dann [mm] -\frac{1}{\lambda^2}<0 [/mm] und wegen [mm] n\not=0 [/mm] folgt..


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]