www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Polynom-Zerlegung
Polynom-Zerlegung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom-Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Mo 15.09.2008
Autor: Psychopath

Man kann ja nicht jedes Polynom in Linearfaktoren zerlegen. Aber ich hab mal gelesen (glaube ich), dass man jedes Polynom in ein Produkt aus Linearfaktoren und quadratischen Termen zerlegen kann.

1. Gibt es so einen Satz?
2. Ist der Beweis elementar? Beweisidee?
3. Wie zelege ich z.B. den Faktor [mm] (x^4+4) [/mm] in ein Produkt zweier quadratische Terme [mm] (x^2+a)(x^2+b), [/mm] wenn die vier  komplexen Lösungen (müßte x+i, x-i, -x+i, -x-1 sein) bekannt sind? .

        
Bezug
Polynom-Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Mo 15.09.2008
Autor: Somebody


> Man kann ja nicht jedes Polynom in Linearfaktoren zerlegen.
> Aber ich hab mal gelesen (glaube ich), dass man jedes
> Polynom in ein Produkt aus Linearfaktoren und quadratischen
> Termen zerlegen kann.
>
> 1. Gibt es so einen Satz?

Ja. Er folgt aus dem "Fundamentalsatz der Algebra", den C.F.Gauss in seiner Dissertation bewiesen hat: Jedes komplexe Polynom positiven Grades besitzt mindestens eine komplexe Nullstelle.
Sind die Koeffizienten des Polynoms $p(z)$ reell, dann ist notwendigerweise zu jeder komplexen Nullstelle [mm] $z_0$ [/mm] auch deren Konjugierte [mm] $\overline{z}_0$ [/mm] eine Nullstelle von $p(z)$, und zwar eine Nullstelle derselben Vielfachheit.

>  2. Ist der Beweis elementar? Beweisidee?

Das kommt draufan, was Du als "elementar" empfindest. Bei der Vorbereitung auf ein Abitur wird dieser Satz wegen der damit verbundenen Grundkenntnise (etwa über den Satz vom Minimum und Maximum für stetige Funktionen auf einer kompakten Menge) nicht bewiesen. Aber in einer ersten Vorlesung über Analysis wird dies am Anfang eines Studiums schon bewiesen werden.

>  3. Wie zelege ich z.B. den Faktor [mm](x^4+4)[/mm] in ein Produkt
> zweier quadratische Terme [mm](x^2+a)(x^2+b),[/mm] wenn die vier  
> komplexen Lösungen (müßte x+i, x-i, -x+i, -x-1 sein)
> bekannt sind? .

[notok] Etwas eigenartige Lösungen hast Du Dir hier ausgedacht. Die komplexen Lösungen von [mm] $x^4+4=0$ [/mm] sind [mm] $x_1=1+i$, $x_2=1-i$, $x_3=-1+i$ [/mm] und [mm] $x_4=-1-i$. [/mm]

Du musst einfach Paare von Linearfaktoren zu konjugiert-komplexen Nullstellen zusammenfassen und ausmultiplizieren: ergibt jeweils ein quadratisches reelles Polynom.
Beweis: [mm] $(z-z_0)\cdot(z-\overline{z}_0)=z^2-(z_0+\overline{z}_0)z+z_0\overline{z}_0=z^2-2\mathrm{Re}(z_0)+|z_0|^2$. [/mm]

Wendet man diese Überlegung auf Dein Beispiel an, dann erhält man:

[mm] [center]$x^4+4=\big((x-x_1)\cdot (x-x_2)\big)\cdot\big((x-x_3)\cdot(x-x_4)\big)=(x^2-2x+2)\cdot (x^2+2x+2)$[/center] [/mm]


Bezug
                
Bezug
Polynom-Zerlegung: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 15.09.2008
Autor: Psychopath

Danke, hat mir sehr geholfen!

P.S.
Bei den Nullstellen handelt es sich um einen Tippfehler.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]