Polynom - Komplexe Nullstellen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:22 Mo 19.01.2009 | Autor: | marcello |
Aufgabe | Für das folgende reelle Polynom p(x) bestimme man die Nullstellen (einschließlich der komplexen Nullstellen) und gebe die Faktorzerlegung von p(x) im komplexen sowie im reellen an.
[mm] p(x)=4x^{3}+20x^{2}+9x+45 [/mm] (Bestimmen Sie zuerst den Wert p(x) für [mm] x=\bruch{3}{2}i)
[/mm]
|
Hallo,
bei der Lösung dieser Aufgabe habe ich einige Schwierigkeiten. Insbesondere das Finden der komplexen Nullstellen fällt mir schwer. Ich weiß gar nicht, wo ich ansetzen soll, geschweige denn, was der Tipp mit [mm] x=\bruch{3}{2}i [/mm] mir sagen soll, denn da bekomme ich p(x)= 15 + [mm] \bruch{15}{2}i. [/mm] Und jetzt...? Wenn das ein Ansatz für eine NS wäre, dann müsste ich doch p(x)=0 erhalten. Oder ist dieser Tipp nutzlos?
Beim Versuch die Aufgabe auf herkömmliche Weise zu lösen, also ein x = a zu suchen für das p(a)=0 ist, habe ich leider auch keinen Erfolg. Wo ist hier der Ansatz?
Danke für jede Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Gruß,
marcello
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:30 Mo 19.01.2009 | Autor: | Loddar |
Hallo Marcello!
Da musst Du Dich verrechnet haben. Ich erhalte [mm] $p\left(\bruch{3}{2}*i\right) [/mm] \ = \ [mm] \red{0}$ [/mm] .
Damit kannst Du nun eine Polynomdivision durch [mm] $\left(x-\bruch{3}{2}*i\right)$ [/mm] durchführen.
Andererseits kennt man nunmehr auch eine weitere Nullstelle mit [mm] $\red{-}\bruch{3}{2}*i$ [/mm] , so dass Du die Polynomdivision auch gleich mit [mm] $\left(x-\bruch{3}{2}*i\right)*\left(x+\bruch{3}{2}*i\right) [/mm] \ = \ [mm] \left(x^2+\bruch{9}{4}\right)$ [/mm] durchführen kannst.
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:01 Mo 19.01.2009 | Autor: | marcello |
Hallo Loddar,
es ist mir fast schon peinlich, wie ich mich da verrechnet habe... Aber danke für deine Antwort, manchmal ist man so blind und festgefahren, dass man sich nicht auf das Wesentliche konzentriert... ;) Hab jetzt auch die Lösung! :)
Gruß,
marcello
|
|
|
|